TIME: 2½ HOURS

MAX. MARKS:60

N.B. 1) All	questions are compulsory	
2)	Figu	res to the right indicate full marks	
3)	Use	of logarithmic table/non programmable calculator is allowed.	
Q.1	A)	Attempt any two of the following:	8
	a)	Discuss in brief "Thermionic detector" and give its application.	r
	b)	Write a note on "Optimization of chromatographic conditions".	
	c)	Define chromatography. Give the classification of chromatographic techniques	
		based on the mechanism of the separation.	
	d)	Discuss the requirements of ideal detector to be used in chromatographic analysis.	
	B)	Attempt any one of the following:	4
	a)	Describe: "fluorescence detector" used in HPLC. Give its applications	
	b)	Write note on "Normal and reversed phase chromatography in HPLC.	
Q.2	A)	Attempt any two of the following:	8
	a)	Give a schematic sketch of instrumentation of mass spectrometer; write in detail	
		about various components of instrumentation.	
	b)	With a suitable diagram, describe the construction and working of 'Quardrapole	
		Mass Analyzer'.	
	c)	Name the different isotopic dilution methods and discuss any one in detail.	
	d)	With the help of neat labelled diagram, describe the gas filled transducer used in	
		X-ray diffraction analysis.	
	В.	Attempt any one of the following:	4
	a)	With the help of schematic diagram, discuss the Electron Ionization source used	
		in mass spectrometry.	
	b)	Write qualitative and quantitative applications of X-ray Fluorescence	
		Spectroscopy.	
Q.3	A)	Attempt any two of the following:	8
	a)	With reference to scanning electron microscopy (SEM), discuss electron gun and	
		optics.	
	b)	Draw a schematic diagram of Transmission electron microscope (TEM) and write	
		the functions of each component.	
	c)	What is electron spectroscopy for chemical analysis (ESCA)? Discuss the source	
		of primary beam and sample holders used in the ESCA instrument.	
	d)	Discuss the basic principle of atomic spectroscopy based on plasma sources.	

B) Answer any one of the following:

- 4
- a) Draw the schematic diagram of Scanning Tunneling Microscope (STM) and discuss the modes of STM operation.
- b) Compare the techniques: scanning electron microscopy (SEM) and Transmission electron microscopy (TEM)
- Q.4 A) Attempt **any two** of the following:

Q

- a) Distinguish between controlled current and controlled potential Coulometry.
- b) Discuss gas sensing electrode with example.
- c) Discuss the factors effecting the nature of deposit in electrogravimetry
- d) Write short note on enzyme based biosensors.
- B) Attempt **any one** of the following:

1

- a) In a polarographic estimation of Cd(II) ions , the following results were obtained : $i_d = 5.65 \times 10^{-6} \, \mu A$, D=6.85 x 10⁻⁶ cm²s⁻¹, m=3.45 mg s⁻¹ and t=2.90s . Calculate the concentration of Cd in the solution.
- Calculate the time needed, in minutes, for a constant current of 0.96 A to deposit 0.5 g of Co(II) as elemental cobalt on the surface of a cathode.
 (1 Faraday = 96500 C, Molar mass of cobalt = 58.93)
- Q.5 Attempt **any four** of the following:

12

a) Integrator output for the Separation of Hydrocarbons by Capillary Column GC-FID are as given in table:

Analyte	Retention time	Area	Peak width at the base (minutes)
Y9,	(min)	10,	
Ethyl	13.359	510009	0.090
Benzene			3
o-xylene	13.724	618229	0.087

Calculate: Calculate k', \alpha for any two adjacent compounds.

- b) Give applications of HPLC.
- c) Explain the basic principle of mass spectrometry.
- d) Enumerate applications and limitations of isotopic dilution analysis.
- e) Discuss the advantages and limitations of AAS.
- f) What is Auger electron? How is it produced?
- g) Discuss instrumentation of electrogravimetry.
- h) Write short note on ion selective field effect transistors.
