TIME: 2 ½ HOURS MAX.MARKS:60 | _ | sures to the right indicate full marks. | | |-------|--|---| | 3) He | | | | | e of logarithmic table/non programmable calculator is allowed. | | | | | | | (| Ca=40, Ag=108, Ba=137, Pb=207, Mg= 24.3, F=19, Cu= 63.5, Cr = 52, Sn=118.7 | | | | | | | , | | | | a) | analytical instrument, | 4 | | | | A | | b) | analytical method. | 4 | | c) | | 4 | | d) | Describe the methods employed for the minimization of error in analysis. | 4 | | B) | Attempt any one of the following: | | | a) | Define: Data domain. What is electrical domain and non-electrical domain? | 4 | | b) | Discuss Quality assurance and quality control with respect to quality management | 4 | | | system in analytical laboratory. | | | | | | | A. 🥳 | Attempt any two of the following: | | | a) | i) Assign oxidation number to Cl in the following compounds – | 4 | | | a. $HClO_4$ b. Cl_2O ii) Calculate the solubility product (K_{sp}) of AgCl, when its solubility in water at $25^{0}C$ is 1.43×10^{-3} g/dm ³ . | | | b) | Calculate the amount of HNO ₃ (density =1.41 gm / cm ³ , 89 % HNO ₃ by weight) required to prepare 500 cm ³ of 4N HNO ₃ . | 4 | | c) | Determine the mole fractions of both the substances in a solution containing 100 g water and 32 g methanol. | 4 | | d) | 100 g of Na ₂ CO ₃ reacts with 100 g of HCl. Calculate the amount of NaCl formed, in moles and in grams. Which is the limiting reagent? | 4 | | В. | Attempt any one of the following: | | | a) | Calculate pH of 2 x 10 ⁻³ Acetic Acid. K _a for Acetic Acid is 1.75 x 10 ⁻⁵ . | 4 | | h | A solution is prepared by adding 5000 mg of SnCl ₂ to form 500 cm ³ solution. Find | 4 | | | i) Molarity of the solution ii) w/v% of SnCl ₂ . | • | | | | | | A. | Attempt any two of the following: | | | a) | With the help of schematic diagram, explain the working of Michaelson | 4 | | | interferometer in FTIR. | | | b) | Explain the basic principle of diffuse reflectance spectroscopy. | | | | (A) (a) (b) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d | a) Define the following terms with respect to performance characteristics of an analytical instrument, Accuracy Linear range Sensitivity Robustness b) What factors should be taken into account for the proper method selection of an analytical method. Define "Sensor" with respect to analytical device. Discuss Piezoelectric effect. Describe the methods employed for the minimization of error in analysis. B) Attempt any one of the following: a) Define: Data domain. What is electrical domain and non-electrical domain? b) Discuss Quality assurance and quality control with respect to quality management system in analytical laboratory. A. Attempt any two of the following: i) Assign oxidation number to Cl in the following compounds – a. HClO₄ b. Cl₂O ii) Calculate the solubility product (K_{sp}) of AgCl, when its solubility in water at 25°C is 1.43 x 10⁻³ g/dm³. b) Calculate the amount of HNO₃ (density =1.41 gm/cm³, 89 % HNO₃ by weight) required to prepare 500 cm³ of 4N HNO₃. c) Determine the mole fractions of both the substances in a solution containing 100 g water and 32 g methanol. d) 100 g of Na₂CO₃ reacts with 100 g of HCl. Calculate the amount of NaCl formed, in moles and in grams. Which is the limiting reagent? B. Attempt any one of the following: a) Calculate pH of 2 x 10⁻³ Acetic Acid. K_a for Acetic Acid is 1.75 x 10⁻⁵. b) A solution is prepared by adding 5000 mg of SnCl₂ to form 500 cm³ solution. Find i) Molarity of the solution ii) W/v% of SnCl₂. A. Attempt any two of the following: a) With the help of schematic diagram, explain the working of Michaelson | | | c) How are the 'Derivative Spectra' obtained in UV-visible spectrophotometry? | | | | | | | | | |-------------|---|--|--------------------------|-------------------------|--------------------|------------|--|--|--| | | 1\ | Discuss the applications of derivative spectra in UV and visible regions. | | | | | | | | | | d) | d) Discuss the principle and optical arrangement of a dual wavelength spectrophotometer.B Attempt any One of the following. | | | | | | | | | | B | | | | | | | | | | | a) | The spectrophotometric | at two different | 4 | | | | | | | | u) | wavelengths gave the fol | V / . | The first time 13 | at two different | 2 | | | | | | | [Given: b= 1cm] | | | T S | | | | | | | | Elements | Concentration | Absorb | ance | | | | | | | | 5 | (mol dm ⁻³) | 550nm | 670nm | | | | | | | | X | 2.1 X 10 ⁻³ | 0.726 | 0.105 | | | | | | | | Y | 7.3 X 10 ⁻³ | 0.165 | 0.872 | | | | | | | | X+ Y | 2 | 0.450 | 0.428 | 6 | | | | | | | Calculate the molar conc | entration at X and | | | | | | | | | b) Name the different IR sources and discuss any one in detail. | | | | | | | | | | | ٠, | | | A 8 | | | | | | | Q.4 | A. | Attempt any two of the | following: | | | 9 | | | | | Q. . | a) (| Explain the application of | ()=/ | ing calorimetry | (DSC) for: | 4 | | | | | | 100 | i. Determination of the glass transition temperature | | | | | | | | | | | ii. To monitor isotherma | = . \(\) | = | | | | | | | | b) | With the help of a repre | | | ower compensated | d DSC 4 | | | | | | , , | instrument. | | | 33, 1 | | | | | | S. C. | c) \ | How is the DSC experim | ent performed? De | scribe the calib | ration of DSC eye | tems 1 | | | | | | | | | | | | | | | | | (d) | | | | | | | | | | |)'
D | sample and reagent trans | • () | | | | | | | | | В. | Attempt any one of the f | 0- \= \(\lambda \cdot \) | | ST. | 4 | | | | | | a) | Discuss the advantages of | | | | 4 | | | | | | b) | Discuss the role of multi | layered mins in au | tomated analysi | is. | 4 | | | | | 0.5 | | Attempt any four of the | following | | | 12 | | | | | Q.S | a) | Discuss quantitative met | N ₹ | h respect to cali | bration curve met | | | | | | | (2) | | | - 6 | oration curve met | nou. | | | | | | b) | Define: 1. Analysis 2. Determination 3. Measurement | | | | | | | | | | (c) | Calculate the amount of K ₂ Cr ₂ O ₇ that is required to prepare 2dm ³ of a 100 ppm solution with respect to Cr ⁺⁶ . How much volume of this solution will be required to | | | | | | | | | | | | | lume of this sol | ution will be requ | irea to | | | | | | J. 7 | prepare 5 dm ³ of a 100pp | |)'
01 M / das 3 of 6 | | 1 N | | | | | | d) | Calculate the pH of a solution containing 0.01 M / dm ³ of CH ₃ COOH and 0.1 M / | | | | | | | | | | 20) | dm ³ of CH ₃ COONa. Given K _a for Acetic Acid is 1.75 x 10 ⁻⁵ . With suitable examples explain the effect of solvents on the 3 yelves in the LIV | | | | | | | | | | e) | With suitable examples explain the effect of solvents on the λ_{max} values in the UV-visible spectra. | | | | | | | | | T | f) | Write short notes on Fingerprint region of IR spectra. | | | | | | | | | - | g) | Describe briefly the diffe | erent types of therm | al methods. | | | | | | | 4 | h) | Compare the techniques: discrete analyzers and continuous flow analyzers. | 5° 7° | | | | | | | |