[Marks: 60] [Time : $2 \frac{1}{2}$ hrs.]

Please check whether you have got the right question paper.

- N.B.: 1. All questions are compulsory.
 - 2. Figure to the right indicates full marks.
 - **3.** Use of non – programmable scientific calculator is allowed.

Useful constants

1. A) Attempt any two of the following:

- State the third law of thermodynamics. How will you determine absolute entropy with the help of the heat capacity?
- Using Maxwell's relation for van der Waal's gas. Show that

$$\frac{\partial C_P}{\partial P} = \frac{2a}{RT^2}$$

- iii) What is the standard molar entropy? How does it depends on the molar mass and molecular structure of a substance.
- What is Joule Thomson effect? Explain the consequences of this effect on real and ideal gases.

Attempt *any one* of the following:

Evaluate the change in entropy when 9 g Hydrogen gas is heated from 30°C to 730°C at a constant pressure of 2 atm. The molar heat capacity of hydrogen gas is 29.07 JK⁻¹mol⁻¹.

4

4

Calculate the joule Thomson coefficient for N₂ gas at 298K and 100 4 atmospheric pressure if the van der Waal's constant a and b for N₂ are 1.41 Nm⁴mol⁻² and 3.92x10⁻⁵ m³mol⁻¹ respectively. (Cp for $N_2 = 29.04 \text{ JK}^{-1} \text{mol}^{-1}$)

Attempt *any two* of the following:

- What is linear harmonic oscillator? Derive Hermite equation for one dimensional simple harmonic oscillator.
- What are the characteristics of a wave function to be acceptable? Show that the normalized wave function of a particle in a dimensional box is given by,

$$\psi_{(n)} = \left(\frac{2}{a}\right)^{1/2} \sin\left(\frac{n\pi x}{a}\right)$$
 Derive the Hermite's differential from the relation

$$\frac{\partial^2 \psi}{\partial y^2} + \left(\frac{\alpha}{\beta} - y^2\right) \psi = 0$$

State the postulates of quantum mechanics.

Page 1 of 3

2. B Attempt *any one* of the following:

- i) An electron is confined in a one dimensional box of length 1 Å. Calculate its ground state energy in electron volts (eV). Is quantization of energy level observable?
- ii) $\hat{A} = \frac{d}{dx}$ and $\hat{B} = \frac{d^2}{dx^2}$ and $f(x) = \sin x$. Show that A and B are commutative each other.

3. A) Attempt *any two* of the following:

- i) In the case of the organic decomposition of ethane, use the steady state equations for the reaction scheme and show that the rate of production of ethylene is given by $\frac{d}{dx} [C_2H_4] = k[C_2H_6]$
- ii) Show that the rate of polymerization reaction is proportional to square root of its initial concentration of the monomer.
- iii) Explain the Rice Ramsperger Kassel (RRK) theory.
- iv) Explain the formation and decomposition of phosgene.

3. B) Attempt *any one* of the following:

- i) The rate of formation of C in the reaction, $2A + B \rightarrow C$ is 0.25 mol L^{-1} s⁻¹. State the reaction rate and the rates of consumption of A and B.
- ii) For the consecutive first order reaction:

$$X \xrightarrow{K_1} Y \xrightarrow{K_2} Z$$

the ratio of k_1 : k_2 are 3:1 and the value of k_1 is 9 x 10^{-3} sec⁻¹. How much time will be required for the concentration of Y to reach a maximum?

4. A) Attempt *any two* of the following:

- State Debye-Huckel-Onsager equation. Discuss its validity for aqueous 4 and non-aqueous solutions.
- ii) Explain in brief relaxation effect and electrophoretic effect for conductance of strong electrolytes.
- iii) With the help of well labelled diagram explain construction and working of solid oxide fuel cell.
- iv) Explain the structure and functions of the cell membrane.

4

4. B) Attempt *any one* of the following:

- i) Calculate the molality and mean ionic activity coefficient of Na_2SO_4 whose ionic strength is the same as that of 0.09m NaCl at 298K, (Given: A=0.509 at 298K)
- ii) Calculate the resting membrane potential for the following:

Suitable the resting memorane potential for the following.		
Ion Species	Intracellular concentration	Extracellular concentration
£5°	in mM	in mM
K ⁺	0.002	2
Cl ⁻	150	10

(Given that
$$\frac{2.303RT}{F}$$
 at $298K = 60.8$)

Paper / Subject Code: 94603 / Chemistry: Physical Chemistry (Rev)

5.	Att	empt <i>any four</i> of the following
	a)	What are the characteristics of exact differential equation?
	b)	Derive the relation,
		$\left[\frac{\partial V}{\partial T}\right]_P = -\left[\frac{\partial S}{\partial P}\right]_T$
	c)	What is meant by normalization of wave function?
	d)	Describe linear momentum operator.
	e)	Discuss the gas phase combustion reaction between H_2 and O_2 . Explain the term explosion limit.
	f)	Explain the principle of microscopic reversibility.
	g)	Explain the effect showing the dispersion of conductance at high frequencies
	h)	Explain in brief the theory behind membrane potential.

18510