(2 ½ hours) Total Marks:60

N.B. (1) All questions are **compulsory.**

(2) Figures to the right indicate full marks.

Q.1 A Attempt **any two** of the following:

8

- a. Explain structural features and applications of Starch and Cellulose.
- b. Give evidence for
 - i) reducing sugar in Lactose is Glucose
 - ii) Glucose and Galactose are linked through β -glycosidic linkage in Lactose.
- c. Give the synthesis of Ubiquinone from 3,4,5-trimethyl acetophenone.
- d. Give structural features and biological importance of carotenoids and anthocyanins.
- Q.1 B Attempt **any one** of the following:

4

- a. Give the Synthesis of Bombykol from acetylene.
- b. Give the synthesis of Atropine.
- Q.2 A Answer **any two** of the following:

8

a. How is reserpine synthesized from the following compounds?

b. Outline the steps involved in the following conversion as a part of Longifoline synthesis.

- c. Give Gilbert-stork synthesis of Griseofulvin from phloroglucinol.
- d. Give analytical evidence for structural elucidation of PGE1.

31198 Page 1 of 7

Q.2 B Answer **any one** of the following:

- 4
- a. Write structural features and give the applications of Gibberelic acid.
- b. Give analytical evidence for the structure determination of PGE1 α .
- Q.3 A Answer **any two** of the following:

8

a. Using spin system notation, designate the type of spin system in the following compounds.

- b. Explain the terms chemical and magnetic equivalence of protons with suitable examples.
- c. Calculate ¹³CNMR shift for all aromatic carbons using incremental shifts of all the aromatic carbon atoms from the table given below for the following compounds.
 - i) Salicylaldehyde ii) p-Hydroxyacetophenone

Substituents	Increments in ppm			
	Ipso	Ortho	Meta	Para
-ОН	+27.0	-13.0	+1.0	-7.0
-СНО	+9.0	+1.0	+1.0	+6.0
-COCH ₃	+9.0	+1.0	+1.0	+6.0

- d. Explain long range coupling in aromatic and allylic compounds.
- Q.3 B Answer **any one** of the following:

4

a. The proton NMR spectrum for a compound with formula C_8H_{18} shows only one peak at 0.86 ppm. The 13 CNMR spectrum has two peaks, a large at 26 ppm and a small one at 35 ppm. Predict the structure of this compound.

31198

Page 2 of 7

b. A compound having molecular formula C₈H₈O₂ shows following data:

UV: 250,265 nm

IR (cm⁻¹): 2700-3500 (very broad), 1700, 1600 (w), 1500, 920

¹HNMR (δppm): 3.5 (12mm, s), 7.2 (30mm, s) ,12.3 (6mm, s)

Assign suitable structure to the compound and state the number of signals obtained in its proton decoupled ¹³CNMR spectrum.

Q.4 A Answer **any two** of the following:

8

- a. Explain COSY technique with suitable example.
- b. A compound shows following spectral data:

Mass spectrum(m/e):M+=102

IR(cm⁻¹): 1735(s),1250(s)

¹HNMR(δppm): 4.023(t,2H),2.050(s, 3H),1.65(m,2H),0.95(t,3H)

¹³CNMR(δppm): 171.09,66.10,22.14,20.91,10,41

What is the structure of the compound?

- c. What is NOE? What is its significance? Explain with suitable example.
- d. The following chemical shifts are obtained in the ¹³CNMR spectrum of the compound

(δppm) 17.3,20.9,31.0,33.2,41.5,79.2

Match the chemical shifts with the appropriate carbons and draw its proton decoupled ¹³CNMR, DEPT-90 and DEPT-135 spectra.

- Q.4 B Answer **any one** of the following:
 - a. Explain NOESY technique with suitable example.
 - b. The following chemical shifts are obtained in the ¹HNMR and ¹³CNMR spectrum of the compound

¹HNMR(δppm):0,93,1.28,1.42,1.8,1.82,2.21,2.48,3.83,5.08,5.15,5.24, 5.26,6.40.

¹³CNMR(δppm):22.0,23.5,25.0,40.8,47.0,67.8,118.2,138.5,143,143.3

Its ¹³CNMR, DEPT-90, DEPT-135, COSY and HETCOR spectra are given.

Match the values to appropriate protons and carbons and justify your answer by using the spectra.

DEPT:

31198

Page 4 of 7

COSY:

HETCOR:

31198 Page 5 of 7

- Q.5 Answer **any four** of the following:
 - a. i) Write a note on aminosugar.
 - ii) Draw the structure of Disparlure.
 - b. Give the synthesis of Grandisol from 2-methyl-1, 3-butadine.
 - c. How glycerol is derived from oils and fats?
 - d. What are the Insect Growth Regulators? Give structure of JH3.
 - e. How many signals you expect in the proton decoupled ¹³C-spectra of following compounds?
 - i)o-Dichlorobenzene ii) Methyl acetate iii) Acetone
 - f. A compound gives following ¹HNMR spectra by using operating frequency 200 MHz. Coupling constant is 8 Hz.
 - ¹H NMR δ (ppm): 3.9, 3.2

Calculate the frequency difference between these two signals and state whether the spectra is of first order or second order.

- g. Sketch and explain HETCOR spectrum of 1-Chloro-2-propanone.
- h. i) Identify the spectral technique that gives the signal for carbon bonded to only one hydrogen.
 - a) DEPT 135
 - b) DEPT 90
 - c) ¹³C NMR
 - d) ¹⁹F NMR

31198

$$O_2N$$
 H_4
 H_6

- ii) In the COSY spectrum of H₂ proton is coupled by a cross peak to _____ protons.
- a) H_4 , H_5
- b) H_5 , H_6
- c) H_4 , H_6
- d) H_4 , H_5 and H_6

$$H_{b}$$
 CI H'' (a)

iii) In the compound (a) the methyl doublet of 1 H NMR at 1.2 δ ppm correlates 13 C NMR signal at δ _____ ppm in its HETCOR spectrum.

- a) 20
- b) 67
- c) 51
- d) 51 and 67