Time: 2.30 Hours [Marks: 60]

Please check whether you have got the right question paper.

N.B: 1. All questions are compulsory.

- 2. Figures to the right indicate full marks.
- 3. Use of non-programmable scientific calculator is allowed.

Useful constants

$$\begin{array}{lll} c = 2.998 \ x \ 10^8 \ m.s^{-1} & e = 1.602 \ x \ 10^{-19} \ C \\ R = 8.314 \ J.K^{-1} \ mol^{-1} = 2.0 \ cal.mol^{-1}.K^{-1} & k = 1.3811 \ x \ 10^{-23} \ JK^{-1} \\ h = 6.626 \ x \ 10^{-34} Js & 1J = 6.24 \ x \ 10^{18} eV \\ m_e = 9.110 \ x \ 10^{-31} \ kg & leV = 8.06 \ x \ 10^3 \ cm^{-1} \\ N_A = 6.022 \ x \ 10^{23} \ mol^{-1} & 1amu = 1.66 \ x \ 10^{-27} \ kg \end{array}$$

Atomic mass of N=14, O=16, H=1, C=12, Cl=35.5

Q.1 A) Attempt **any two** of the following:

- i) What are the conditions required for the wave function to be acceptable? A wave function is given as $\psi = \cos x$ 04
 - a) Is it acceptable?
 - b) Is it normalized? Explain
- ii) Explain the expectation value of a dynamical quantity.

04

- iii) Give the expression for energy of a particle in one dimensional box. Explain how it gives rise to the concept of quantization. Plot a graph of ψ^2 against 'x' for n=1, 2 and 3 and state the number of nodes in each case.
- iv) State the postulates of quantum mechanics.

04

- B) Attempt any one of the following:
- i) The Hermite polynomials are obtained from the following generating functions 04

$$H_n(y) = (-1)^n e^{y^2} \frac{d^n}{dy^n} (e^{-y^2})$$

Calculate the value for the polynomial n=2 and n=3

ii) If $\widehat{A} = 7x^3$ and $\widehat{B} = d/dx$ are the two operators for the function $f(x) = \sin x$, then show that \widehat{A} and \widehat{B} do not commute with each other.

Q.2 A) Attempt any two of the following:

i) Explain the independent electron approximation as applied to two electron system.

04

ii) Give the physical significance of spherical harmonics. Write the expression for spherical harmonics for l=0 and l=1

04

- iii) What is radial wave function? Give its solution and sketch the radial wave function for 2s and 3d orbital.
- iv) What are quantum numbers? Explain the significance of spin quantum number. 04
- B) Attempt any one of the following:
- i) Calculate the values of first two rotational energy levels of a rigid rotor whose moment of inertia is 1.457 X 10⁻⁴⁶ m².

04

ii) The radial wave function of 2s orbital of hydrogen atom is given by

04

$$R_{20} = N \left[2 - \underline{r} \atop a_0 \right] e^{-r/2a_0}$$

where N is constant.

- a) Qualitatively sketch the radial distribution curve.
- b) Determine the distance of node from the nucleus in terms of a₀
- **Q.3** (A) Attempt any **two** of the following:
 - (i) Write the reaction mechanism for decomposition of acetaldehyde and using **04** steady state principal show that

 $\underline{\mathbf{d}} \left[\mathbf{CH}_4 \right] = \mathbf{k} \left[\mathbf{CH}_3 \bar{\mathbf{CHO}} \right]^{3/2}$

dt

(ii) Explain the Rice-Ramsperger-Kassel-Marcus theory

04

(iii) Describe the kinetics of free radical chain polymerization

04

(iv) Give the mechanism of decomposition of ozone.

04

- (B) Attempt any **one** of the following:
- (i) In the following reaction scheme, write the rate equation for the removal of **04** species A, B, C and D in the differential form.
 - (i) $A + B \xrightarrow{k1} C + D$
 - (ii) $C + D \xrightarrow{k2} A + B$
 - (iii) $C + B \xrightarrow{\underline{k3}} E + D$
 - (iv) 2D $\xrightarrow{\underline{k4}}$ F
- (ii) The molecular diameters of O₂ and H₂ gases are 2.59 x 10⁻¹⁰ m and 1.67x10⁻¹⁰ m respectively. Calculate the number of collisions in m⁻³s⁻¹, when 1.0 g of O₂ and 0.1g of H₂ are mixed in one dm³ flask at 300K.
- Q.4 (A) Attempt any two of the following.
- (i) Describe the kinetics of enzyme inhibition by uncompetitive inhibition method. 04
- (ii) Derive mathematical expression for Lineweaver- Burk equation of enzyme catalysed 4 reaction.
- (iii) Derive Hammet equation. Explain how this equation is considered as a linear free energy relationship?
- (iv) Obtain the first order rate law for the reaction of a gas on the surface of solid particles. 04
- (B) Attempt any one of the following.
- (i) Deduce an expression for the contracting area rate law for reactions in solid particles. 04
- (ii) Give mathematical relation between rate constant and dielectric constant of medium in an elementary reaction in solution. 04

Q.5) Attempt any four of the following:

- 12
- a) If $\psi = e^{ix}$ and $\phi = \sin x$ then show that the operator d^2/dx^2 is Hermitian.
- b) Normalise the following wave function and find the value of A

$$\psi = A\sin\left[\frac{2\pi x}{L}\right] \quad \text{in the range } 0 < x < L$$

- c) Write the phi equation, theta equation and R equation from the three separate variables of Schrodinger equation in terms of spherical coordinates.
- d) Transfer the Cartesian coordinates(x,y,z) to polar coordinates(r,Θ,ϕ)
- (e) Explain consecutive reactions with examples.
- (f) Give general characteristics of chain reactions.
- (g) Discuss the factors affecting on kinetics of solid-state reactions.
- (h)Write a note on effect of pH on inhibition of enzyme action.

