[Time: 2 ½ Hours]

[Marks : 60]

Please check whether you have got the right question paper.

N.B: 1

- 1. All questions are compulsory.
- 2. **Figures** to the **right** indicate full **marks**.
- **1.** a) Answer any **two** of the following:
 - i) By applying the concept of hybridization, derive the wave functions for the hybrid orbitals of Boron trichloride molecule.
 - ii) Draw a molecular orbital diagram for triiodide ion a polyatomic species $\mathbf{4}$ considering σ interaction and explain the bonding.
 - iii) State and explain significance of valence bond theory and any two limitations.
 - iv) What are Vander Waals forces of attraction? Explain various dipole attractions.
 - **b)** Answer any **one** of the following:
 - i) Define resonance energy? Derive equation for resonance energy showing the
 contributing resonance structure with the lowest potential energy.
 - ii) What is hydrogen bonding? Explain its effects on physical properties of compounds.
- **2.** a) Answer any **two** of the following:
 - i) Draw a flow sheet and explain various steps involved in the procedure for symmetry classification of the molecule.
 - ii) Show that the C_2v point group is an Abelian group.
 - iii) State the great orthogonality theorem. Construct the character table for water molecule.
 - iv) With help of character table and reduction formula, calculate translation, rotational and vibrational modes in ammonia molecule.

b)	Answer any one of the following:	
	i)	On the basis of symmetry Adapted Linear combination, draw the molecular orbital	34
		diagram for methane molecule.	
	ii)	Discuss optical activity in a molecule on basis of group theory.	24
3. a)		Answer any two of the following:	300
	i)	Explain the origin of first Brillouin zone boundary in K space and diffraction of	4
		electron in 100 plane.	6 A
	ii)	Describe the microwave method for the preparation of inorganic solids.	§ 4
	iii)	Explain the structure and salient features of NiAs.	4
	iv)	Give the applications of nanomaterial in the field of semiconductors.	4
b)		Answer any one of the following:	
	i)	How are nanomaterial prepared by using microorganisms?	4
	ii)	Mention the merits and demerits of sol gel method.	4
. a)		Answer any two of the following:	
	i)	With reference to Complex formation, explain the following evidences:	4
		a) Ion exchange Adsorption	
		b) Magnetic method	
	ii)	Justify "The measurement of molar conductance of aqueous solution of	4
	Á	cobaltamines compounds helps Werner to assigned correct formulae."	
	iii)	Draw the orgel diagram for the complex ion [CrF ₆] ³⁻ and assign the electronic	4
35		transitions.	
	iv)	Prove that the formation constant of $[Cu(NH_3)_4]^{2+}$ from Cu^{2+} and NH_3 ,	
91. E		$B4 = K_1 \times K_2 \times K_3 \times K_4.$	
b)	20 P	Answer any one of the following:	
	i)	Discuss the continuous variation method for the determination of formation	4
p 600	33	constant	

79859

- ii) Draw simplified Tanube Sungano diagram for d^3 system. The Δ_0 for the complex has been evaluated to be 17600 cm⁻¹. Evaluate the wave number of first two Spinallowed bands in its spectrum. (Given $\frac{\Delta_0}{B}$ = 19.2 , B = 918 cm⁻¹)
- **5.** Answer any **four** of the following :
 - a) Draw a molecular orbital diagram for diborane molecule. Explain bonding in the molecule.
 - b) State rules for the construction of resonating stuructures with the suitable examples.
 - c) Derive the matrix representation for reflection operation on the basis of group theory.
 - d) Explain Mulliken's Notations for irreducible representation for C₂h and C₂v point groups.
 - e) On the basis of band theory, explain the electrical properties of lithium and beryllium metals.
 - f) Explain the precursor method for the preparations of inorganic materials.
 - g) The electronic spectrum of [Ti $(H_2O)_6$]³⁺ has an absorption maximum at 20,300 cm⁻¹. Calculate the Δ_0 for this complex.

(Given: $h = 6.62608 \times 10^{-34} Js \text{ and } c = 2.997 \times 10^8 ms^{-1}$)

h) Write advantages of Tanube – Sugano diagram over orgel diagram. State noncrossing rule

3