[Time: 2 ¹/₂ Hours]

[Marks:60]

(04)

(04)

Please check whether you have got the right question paper.

- N.B: **%**. All questions are compulsory.
 - २. Figures to the right indicate full marks.
 - **3**. Use of non-programmable calculator is allowed.

Useful constants:

$c = 2.998 \times 10^8 \mathrm{ms}^{-1}$	$N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$
$h = 6.626 \times 10^{-34} \text{ Js}$	$k = 1.381 \times 10^{-23} \text{ JK}^{-1}$
$e = 1.602 \times 10^{-19} C$	$1 \text{ eV} = 8.06 \times 10^3 \text{ cm}^{-1}$
$R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1}$	1 atmosphere = $1.01325 \times 10^5 \text{ Nm}^{-2}$
$m_e = 9.11 \times 10^{-31} \text{ kg}$	SEESSER BERESSESSESSESSESSESSESSESSESSESSESSESSES

Atomic mass of H = 1, C = 12, N = 14, O = 16, S = 32, Cl = 35.5

- Q.1 A) Attempt any two of the following:
 - i) State the third law of thermodynamics. How will you determine the absolute entropy (04) of a liquid using third law?
 - ii) Derive an expression for Joule-Thomson coefficient in terms of Van der Waal's (04) constants.
 - iii) What are the characteristics of exact differential?
 - iv) What is standard molar entropy? How does it depends on the molar mass and (04) molecular structure of a substance?

B) Attempt any one of the following:

i) Find the increase in entropy when 1g of ice at -10° C is converted to steam at 100°C. (04) Given : specific heat of ice = 0.5

Latent heat of steam = 540cals/g

Latent heat of fusion = 80cal/g

- ii) Calculate the Joule-Thomson coefficient for ammoniac gas at 298K and at 100 (04) atmospheric pressure if the Van der Waal's constant 'a' and 'b' for ammonia are 0.138Nm⁴ mol⁻² and 3.94 x 10⁻⁵m³mol⁻¹ respectively. Cp for ammonia is 25.99JK⁻¹ mol⁻¹
- Q.2 Attempt any two of the following:
 - i) State the main postulates of quantum mechanics.
 - ii) Derive an expression for energy of a particle in two dimensional box from (04) Schrodinger wave equation.

Page 1 of 3

80004

iii) What do you mean by degeneracy of energy levels? Determine the degree of (04) degeneracy of the energy level $\frac{17h^2}{8ma^2}$ for a particle in a cubical box.

(04)

(04)

(04)

iv) For Hermites differential equation,

$$\frac{d^2F}{dy^2} - 2y\frac{df}{dy} + \left(\frac{\alpha}{\beta} - 1\right) = 0$$

obtain the recursion formula.

- B) Attempt **any one** of the following:
- i) Consider an electron moving in one dimensional box of 2A° width. (04)
 Calculate the transition in energy when an electron jumps from second orbit to first orbit. Also calculate the wavelength of the emitted radiation
- ii) If $f(x) = 5.e^{-3x}$ and operator $\widehat{A} = \frac{d^2}{dx^2}$, then show that f(x) is an eigen function. Find (04) the eigen value.
- Q.3 A) Attempt any two of the following:
 - i) Using steady state approximation for the thermal decomposition of acetaldehyde. (04) Show that $d/dt [CH_4] = K [CH_3CHO]^{3/2}$
 - ii) H_2 reacts with Br₂ to give HBr according to reaction $H_2 + Br_2 \xrightarrow{h\nu} 2HBr$. (04) Using the chain reaction mechanism, obtain the rate equation for the above thermal reaction.
 - iii) Discuss the various factors affecting the rate of a non-stationary chain reaction and (04) occurrence of three explosion limits using suitable example.
 - iv) Give a brief account of Rice-Ramsperger-Kassel theory.
 - B) Attempt any one of the following:
 - i) The rate of formation of C in the reaction, $2A+B \rightarrow 2C + 3D$ is 2 mol L⁻¹s⁻¹. State the (04) reaction rate and the rates of formation or consumption of A,B and D
 - ii) Consider the following consecutive reaction

$$R_1 \stackrel{k_1}{\to} R_2 \stackrel{k_2}{\to} R_3$$

where k_1 and k_2 are the rate constants for a first order reaction. If the initial concentration of R_1 is 1 M and k_1 : $k_2 = 1.0 : 0.15$, calculate the concentration of each species after 10 seconds. Given: $k_1 = 6 \times 10^{-2} \text{ min}^{-1}$

Page 2 of 3

- **Q.4** A) Attempt **any two** of the following:
 - i) Write Debye-Huckel and Onsager equation and show that at infinite dilution, (04) $\Lambda_{\rm m}$ approaches to $\Lambda^{\circ}_{\rm m}$.
 - ii) State Debye-Huckel theory for strong electrolytes and explain the term asymmetry (04) effect.
 - iii) Derive an equation of mean ionic activity coefficient and ionic strength for strong (04) electrolytes.

(04)

(12)

- iv) Illustrate the construction and working of phosphoric acid fuel cell.
- B) Attempt **any one** of the following:
- i) Calculate the activity coefficient of Cu^{2+} and NO_3^- ions in 2.5 x 10⁻³M aqueous (04) solution of $Cu(NO_3)_2$. Using these values, calculate the mean ionic activity coefficient and the mean ionic concentrations. (Given, A = 0.509 at 298K)

ii) Calculate the Nernst equilibrium potential for each of the following ions at 293 k			(04)
	Ionic concentrations	Ionic concentrations	
	inside cell	outside cell	
1) Calcium	n 0.009mm	10mm	
2) Chloride	56mm	550mm.	
(Given; R =	8.315 joules K ⁻¹ mol ⁻¹ ,	F = 96485 Joules volt ⁻¹ mol ⁻¹)	

- Q.5 Attempt any four of the following:
 - a) For one mole of an ideal gas, PV = RT. Show that dP is an exact differential.
 - b) Explain the concept of residual entropy with a suitable example.
 - c) Give the limitations of quantum mechanics.
 - d) Show that eigen values of a Hermitian operator are real.
 - e) Explain the principle of microscopic reversibility.
 - f) Explain consecutive reactions with suitable examples.
 - g) Write a note on theory of membrane potentials and interfacial electron transfer in biological system.
 - h) With suitable examples, explain the uses of enzyme as an electrode.

Page **3** of **3**