Paper / Subject Code: 94603 / Chemistry: Physical Chemistry (Rev)

[Time: 2.30 Hours] [Marks: 60]

Please check whether you have got the right question paper.

NB;

- 1. All questions are compulsory.
- 2. Figures to the right indicate full marks.
- 3. Use of non-programmable calculator is allowed.

Useful constants:

$$\begin{array}{lll} c=2.998 \ x \ 10^8 ms^{-1} & e = 1.602 \ x \ 10^{-19} C \\ R = 8.314 \ J K^{-1} mol^{-1} & J = 6.24 \ x \ 10^{18} eV \\ h = 6.626 \ x \ 10^{-34} Js & latm = 1.013 \ x \ 10^5 \ Nm^{-2} \\ N_A = 6.022 \ x \ 10^{23} \ mol^{-1} & leV = 8.06 \ x \ 10^3 \ cm^{-1} \\ 1 \ amu \ = 1.66 \ X10^{-27 kg} \end{array}$$

Atomic mass of H = 1, C = 12, N = 14, O = 16

Q.1 a Attempt any two of the following:

(i) Show that the pressure is a state function for an ideal gas obeying the equation of 4 state

$$(P + \underline{a}_{V^2}) (V - b) = RT$$

- (ii) State the third law of thermodynamics. Give its application. Why molecules like 4 CO and N₂O have positive value of entropy at zero Kelvin.?
- (iii) Define Joule-Thomson coefficient. Give its significance. 'Ideal gases do not show Joule-Thomson effect.' Explain.

4

- (iv) Write the expression for entropy changes in the following phase transitions
 - i) Melting
- ii) Vapourisation
- iii) Sublimation
- iv) Allotrpoic transformation
- **(b)** Attempt any **one** of the following:
- (i) A function ϕ is defined as $\phi(x,y) = x^2y^3 + x$. Write its partial derivatives and total differential. Test whether $d\phi$ is an exact differential or not.
- (ii) A piece of alloy weighing 2 kg and at a temperature of 500°C is placed in 4 kg of water at 300K. If the heat capacity of water is 4.184JK⁻¹g⁻¹ and that of alloy is 22JK⁻¹g⁻¹ Calculate the entropy change.

Q.2 a Attempt any two of the following:

(i) What are the characteristics of a wave function to be acceptable? Show that the normalised wave function of a particle in a one dimensional box is given by, $\varphi_{(n)} = \left(\frac{2}{a}\right)^{1/2} \sin\left(\frac{n\pi x}{a}\right)$

Paper / Subject Code: 94603 / Chemistry: Physical Chemistry (Rev)

- (ii) Derive the Hermite's differential from the relation $\frac{d^2\psi}{dy^2} + \left(\frac{\alpha}{\beta} y^2\right)\psi = 0$ (iii) Obtain an expression for energy of a particle in one dimensional box of length 4
- 'a'.
 (iv) State the postulates of quantum mechanics.

 4
- (cr) which are provided to provide the provided to the provide
- (b) Attempt any one of the following:(i) The Hermite polynomials are derived from the generating function
- (i) The Hermite polynomials are derived from the generating function $H_{n(y)} = (-1)^n e^{y^2} \frac{d^n}{dy^n} \left(e^{-y^2} \right)$ Calculate the polynomial for n=1 and n=3

(ii) Calculate the lowest kinetic energy of an electron in a three dimensional box of

Q.3a Attempt **any two** of the following:

dimensions 0.001pm, 0.0015pm amd 0.002pm.

- (i) Write the reactions for thermal decomposition of acetaldehyde. Using steady state approximation show that the rate of formation of methane is given by $\underline{d} [CH_4] = k [CH_3CHO]^{3/2}$ $\underline{d} t$
- (ii) H₂ reacts with Br₂ to give HBr according to the reaction

 4
 H₂ + Br₂ ho 2HBr. Using the chain reaction mechanism, obtain the rate equation for the above thermal reaction.
- (iii) Describe the effect of pressure and temperature on the rate of an explosion reaction with the help of a suitable example.
- (iv) Give a brief account of the Lindeman-Hinshelwood theory of unimolecular reactions in gas phase.
- (b) Attempt any one of the following:
- (i) The rate of formation of C in the reaction, $2A + B \rightarrow 2C + 3D$ is 1 mol L⁻¹ s⁻¹. State the reaction rate and the rates of formation or consumption of A,B and D
- (ii) Consider the following consecutive reaction
 R₁ k₁ R₂ k₂ R₃
 Where k₁ and k₂ are the rate constants for a first order reaction. If the initial concentration of R₁ is 1 M and k₁:k₂ 1.0:0.15. Calculate the concentration of each species after 10 seconds. Given k₁ = 4 × 10⁻² min⁻¹.

Q.4a Attempt any two of the following:

- (i) Derive an equation for the Debye -Huckel limiting law.
- (ii) State Debye-Huckel-Onsager equation and discuss its validity for aqueous 4 solutions.

4

- (iii) With the help of diagram explain the working of solid oxide fuel cell. 4
- (iv) Explain Deby-Falkenhagen and wien effect. 4

Paper / Subject Code: 94603 / Chemistry: Physical Chemistry (Rev)

- **(b)** Attempt any **one** of the following:
- (i) Calculate the mean activity coefficient of (i) NaCl at a molality of 0.01 Na₂SO₄ at a molality of 0.001 in aqueous solution at 25°C. Given :A for water at 25°C is 0.509)
- (ii) 4
- (ii) Calculate the resting membrane potential for a living cell for the following concentrations of Na^+ and K^+ at 298K.
- 4

Intra cellular concentration of K^+ = 410mM Na^+ = 40mM

Extra cellular concentration of K^+ = 16mM Na^+ = 380mM (given : 2.303RT/ F = 60 at 298K)

- Q.5 Attempt any four of the following:
 - a Explain the determination of absolute entropy with the help of heat capacity concept.

3

3

b Derive the relation:

$$\left(\frac{\partial P}{\partial T}\right)_{V}^{=} \left(\frac{\partial S}{\partial V}\right)_{T}^{}$$

- c State Heisenberg's uncertainty principle. An electron moves in the first orbit with a speed of 2 X 10⁶ ms⁻¹. If its momentum is measured with a accuracy of 1 %, what is uncertainty of position?
 - . 3
- d Give an expression for allowed energy levels of linear harmonic oscillator. Comment on spacing of energy levels. What is zero point energy?
- 3

e Explain consecutive reactions with examples.

3

g Write a note on enzyme-catalysed oxidation of styrene.

f Give a brief account of Rice-Ramsperger-Kassel-Marcus theory.

3

h State any three applications of Alkaline fuel cell.

3

5<u>,4,5,8,4,5,4,5,4,------</u>