[Time: 2.5 Hours] [Marks: 60] Please check whether you have got the right question paper. N.B. 1. All questions are compulsory. 2. Figures to the right indicate full marks. | Q.1. | a) | Attempt ANY TWO of the following: | | |------|------------|--|---| | | i) | Derive the wave functions for sp ² hybrid orbitals considering sigma bonding only. | 4 | | | ii) | Explain the concept of resonance. Draw the resonating structures for sulphate ion. | 4 | | | iii) | On the basis of molecular orbital theory explain the structure and bonding in diborane molecule. | 4 | | | iv) | What are Van der Waals forces? Explain any two types with suitable examples. | 4 | | Q.1. | b) | Attempt ANY ONE of the following: | | | | i) | On the basis of Valence Bond Theory, explain the structure and bonding of ClF ₃ and PF ₅ . | 4 | | | ii) | Draw a molecular orbital diagram for triiodide ion and explain its structure and bonding. | 4 | | Q.2. | a) | Attempt ANY TWO of the following: | | | | i) | On the basis of group theory, explain optical activity in a molecule. | 4 | | | ii) | Discuss the criteria for a set of elements to form a group by giving suitable example. | 4 | | | iii) | With the help of suitable example explain Abelian and non -Abelian point groups. | 4 | | | iv) | On the basis of Symmetry Adapted Linear Combination (SALC), draw the molecular orbital diagram for methane molecule. | 4 | | Q.2. | b) | Attempt ANY ONE of the following: | | | | i) | Give and explain the character table for C_{3v} point group. | 4 | | | ii) | Derive the matrix representation for rotation operation. | 4 | | Q.3. | a) | Attempt ANY TWO of the following: | | | | i) | Explain the electrical property of alkali metal on the basis of band theory. | 4 | | | ii) | Draw the structure of TiO ₂ and discuss its salient features. | 4 | | | iii) | Describe the precursor method for the preparation of inorganic solids. | 4 | | | | Mention its merits and demerits. | 4 | | | iv) | Explain the Co-precipitation method for the preparation of nanomaterials. | 4 | 61940 Page **1** of **2** | Q.3. | b) | Attempt ANY ONE of the following: | | |----------|--------------|---|----| | | i) | Discuss the structure for an inorganic solid of type AB. | 4 | | | ii) | Describe the microwave method for the preparation of nanomaterials. | 4 | | Q.4. | a) | Attempt ANY TWO of the following. | | | | i) | With respect to complex formation, explain the following evidences: 1) dissolution of insoluble precipitate 2) pH metric study. | 4 | | | ii) | Draw the Orgel diagram for $[Ni(H_2O)_6]^{2+}$. Assign the electronic transitions. | 4 | | | iii) | Rationalize the IR data for the following: | 34 | | | | Species v_{CO} in cm ⁻¹ | | | | | $[V(CO)_6]$ 1860 | 8 | | | | $[Cr(CO)_6]$ 2000 | | | | | $[Mn(CO)_6]^{-}$ 2090 | 26 | | | iv) | Explain the potentiometric method for the determination of formation | 4 | | | | constant in complexes. | XX | | Q.4. | b) | Attempt ANY ONE of the following: | 6 | | | i) | Discuss the Faraday's method for the determination of magnetic moment. Calculate μ_{eff} for the complex $[Cr(H_2O)_6]Cl_2$. | 4 | | | ii) | Explain the slope-ratio method for the determination of formation constant. | 4 | | Q.5. | | Attempt ANY FOUR of the following. | 12 | | | a) | Explain in brief any two methods for the detection of hydrogen bonding. | | | A TO | b) | What are limitations of valence bond theory? | | | | c) | Write a note on Mulliken's notations for irreducible representations. | | | | d) | Give the characteristics of a subgroup. Write the subgroups for C _{2v} point group. | | | | e) | Mention the merits and demerits of ceramic method. | | | | f) < | Discuss the applications of nanomaterials in the field of solar cells. | | | | g) | The ¹ H NMR for the complex [Fe (η^1 -C ₅ H ₅)(η^5 -C ₅ H ₅) (CO) ₂] shows two | | | | 200 | peaks, Explain. | | | | h) | Write a note on continuous variation method for the determination of formation constant. | | | 51,021,5 | V' D' | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | | 61940 Page **2** of **2**