[Time : 2.30 Hours] [Marks: 60]

Please check whether you have got the right question paper.

NB:

- 1. All questions are compulsory.
- 2. Figures to the right indicate full marks.
- 3. Use of non-programmable calculator is allowed.

Useful constants:

$$\begin{array}{lll} c=2.998 \text{ x } 10^8 m s^{-1} & e = 1.602 \text{ x } 10^{-19} \text{C} \\ R=8.314 \text{ JK}^{-1} \text{mol}^{-1} & J=6.24 \text{ x } 10^{18} \text{eV} \\ h=6.626 \text{ x } 10^{-34} \text{Js} & 1 \text{atm} = 1.013 \text{ x } 10^5 \text{ Nm}^{-2} \\ N_A=6.022 \text{ x } 10^{23} \text{ mol}^{-1} & 1 \text{eV} = 8.06 \text{ x } 10^3 \text{ cm}^{-1} \\ 1 \text{ amu} = 1.66 \text{ X } 10^{-26} \text{kg} \end{array}$$

Atomic mass of H = 1, C = 12, N = 14, O = 16

Q.1(a) Attempt any two of the following:

- (i) Starting with van der waal's equation, show that
 - $\mu_{JT} = \frac{1}{C_p} \left(\frac{2a}{RT} b \right)$

where the terms have usual meaning.

(ii) What is Joule-Thomson effect? Explain the consequences of this effect on real and ideal gases.

4

(iii) State the characteristics of entropy. Giving reason, say which molecule of the pair given below has greater molar entropy under the same conditions.

- (iv) What are the deviations of third law of thermodynamics? 4
- **(b)** Attempt **any one** of the following:
- (i) Calculate the Joule Thomson coefficient (μ_{JT}) for N_2 gas at 298K and 100 atmospheric pressure if the van der waal's constants a and b for N_2 are 1.41Nm⁴mol⁻² and 3.92 X 10⁻⁵ m³ mol⁻¹ respectively.(Cp for N_2 = 29.04JK⁻¹mol⁻¹
- (ii) Calculate the residual entropy of a crystal in which molecules can adopt six orientations of equal energy at absolute zero.

Q.2(a) Attempt any two of the following:

- (i) Set up a Schrodinger wave equation for a particle in two dimensional box 4 and obtained a normalised wave function for it.
- (ii) What is the condition for orthogonality of wave function? Show that the two dimensional wave functions ψ_1 and ψ_2 are orthogonal to each other.
- (iii) Explain the term 'expectational value' of a dynamic quantity. 4

Paper / Subject Code: 94603 / Chemistry: Physical Chemistry (Rev)

(iv) Derive the Hermite's differential from the relation $\frac{d^2\psi}{dy^2} + \left(\frac{\alpha}{\beta} - y^2\right)\psi = 0$

4

- (b) Attempt **any one** of the following:
- (i) Calculate the spacing between lowest and highest energy level for particle 'A' of mass 10⁻³⁰kg confined in a one dimensional box of length 10⁻¹⁰m and particle B of mass 10⁻³ kg in one dimensional box of length 10 cm. State giving reasons for which particle quantisation is observed?
- (ii) Determine the degree of degeneracy of the energy level: 4 a) $E = 11h^2/8ma^2$ b) $17h^2/8ma^2$
- Q.3(a) Attempt any two of the following:
 - (i) Explain the mechanism of decomposition of ozone 4
 - (ii) Obtain rate law expression for the thermal reaction $H_2 + Br_2 \rightarrow 2HBr$
 - (iii) Show that the rate of polymerization reaction is proportional to the square root of initial concentration of the monomer.
 - (iv) Explain the Rice-Ramsperger-Kassel-Marcus theory. 4
 - (b) Attempt any one of the following:
 - (i) In the following reaction scheme, write the rate equation for the removal of species A, B, C and D in differential form

(ii) The following process follows first order kinetics $x \xrightarrow{22.5d} y \xrightarrow{33.0d} z$

where the times are half lives in days. At what stage of time will the concentration of y become maximum?

O.4(a) Attempt any two of the following:

- (i) State the Deby-Huckel theory of strong electrolytes and explain the terms 4
 Asymmetry effect and electrophoretic effect.
- (ii) Explain the conductance behaviour of a solution of a strong electrolyte 4 by applying alternative current of different frequencies and discuss the Wien effect.
- (iii) With the help of diagram explain the working of molten carbonate fuel cell.
- (iv) Write a note on catalysed oxidation of styrene.

Paper / Subject Code: 94603 / Chemistry: Physical Chemistry (Rev)

(b) (i)	Attempt any one of the following: Calculate the ionic strength of a solution which is 0.1 molal in KCl and	4
	0.2 molal in K ₂ SO ₄ .	12 C
(ii)	Calculate the resting membrane potential for a living cell for the	4
	following concentrations of Na ⁺ and K ⁺	
	Intra cellular concentration of K ⁺ = 390mM and Na ⁺ = 48mM	
	Extra cellular concentration of K^+ = 12mM and Na^+ = 412mM	500
	(given that 2.303RT/F = 59.4 at 300K)	
Q.5 a	Attempt any four of the following: Derive the Maxwell relation	3
	$(\partial T/\partial V)s = -(\partial P/\partial s)v$	200
b	What are exact and inexact differentials? Draw the Maxwell	3
	thermodynamic square.	
c	If operator A =Cos 5x and operator B = \int , then state whether operate A	3
	and operator B commute with each other or not.	
d	State the postulates of quantum mechanics.	3
e	Explain consecutive reactions with examples.	3
f	Explain three explosion limits of non-stationary chain reaction.	3
g	Write any three applications of phosphoric acid fuel cell.	3
h	Explain the theory of membrane potential in biological cell.	3
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	