Chemistry- Papar - I (Physims)

QP Code: 75731

(21/2 Hours)

[Total Marks: 60

N.B.: (1) All questions are compulsory.

- (2) Figures to the right indicate maximum marks.
- (3) Use of Non-programmable scientific calculator is allowed.

 Useful constants:

c =
$$2.998 \times 10^8 \text{ ms}^{-1}$$
 e = $1.602 \times 10^{-19} \text{ C}$
R = $8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ k = $1.3811 \times 10^{-23} \text{ J K}^{-1}$
h = $6.625 \times 10^{-34} \text{ Js}$ lJ = $6.24 \times 10^{18} \text{ eV}$
m_e = $9.109 \times 10^{-31} \text{ kg}$ leV = $8.06 \times 10^3 \text{ cm}^{-1}$
N_A = $6.023 \times 10^{23} \text{ mol}^{-1}$ lamu = $1.66 \times 10^{-27} \text{ kg}$
Atomic Mass of C = 12 , O = 16 .

1.(a) Attempt any two of the following:

- (i) Explain the terms:
- 4
- (1) Linear operator
- (2) Hermitian operator.
- (ii) Formulate the Schrödinger wave equation for a particle in one 4 dimensional box and obtain the normalised wave function for it.
- (iii) Show that the functions:

$$\psi_1 = \left(\frac{1}{2\pi}\right)^{1/2}$$

$$\psi_2 = \left(\frac{1}{\pi}\right)^2 \cos x$$

$$\psi_3 = \left(\frac{1}{\pi}\right)^2 \sin x$$

in the interval x = 0 to $x = 2\pi$ are orthogonal to each other.

(iv) What is linear harmonic oscillator? Obtain an expression for linear harmonic oscillator from the following equation.

$$\frac{d^2\psi}{dy^2} + \left(\frac{\alpha}{\beta} - y^2\right)\psi = 0$$

- (b) Attempt any one of the following:
 - (i) If $\hat{A} = 3x^2$ and $\hat{B} = \frac{d}{dx}$ then show that \hat{A} and \hat{B} do not commute,
 - (ii) A particle of mass 'm' is confined in one dimensional box of length 'a'. Calculate the probability of finding the particle at x where $0 \le x \le \frac{a}{4}$.
- 2. (a) Attempt any two of the following:
 - (i) Obtain the equations of separation of variables from the Schrödinger wave equation in terms of spherical coordinates
 - (ii) Explain the need for approximate solution to two electron system.

 Show how the problem of two electron system can be reduced to problem of one electron system.
 - (iii) What are radial probability distribution curves? Qualitatively plot the radial probability distribution curves for 3s, 3p and 3d orbital's.
 - (iv) With respect to hydrogen like atom, answer the following:

 (1) Write the Hamiltonian operator for it and identify the terms
 - (1) Write the Hamiltonian operator for it and identify the terms involved.
 - (2) Mathematically express the coordinates of the centre of mass and relative coordinates of the system.
 - (b) Attempt any one of the following:
 - (i) The internuclear distance between carbon and oxygen atom in carbon monoxide molecule, which acts as a rigid rotor, is 1.13×10^{-10} m. What is the rotational energy for J = 3?
 - (ii) A hydrogen like orbital is given below:

$$\psi = \frac{\sqrt{2}}{81\sqrt{\pi}} Z^{\frac{5}{2}} \cdot (6 - Zr) Zre^{-Zr/3} \cdot \cos\theta \text{ (in a.u.)}$$

Determine the quantum numbers n, l and m by inspection and identify the orbital.

4

3.(a) Attempt any two of the following:

- (i) On the basis of the collision theory, derive an expression for the rate constant of a bimolecular gaseous reaction.
- (ii) Define kinetic chain length and show that the rate of polymerization reaction is proportional to the square root of the initiator concentration.
- (iii) Explain the variation of the rate of reaction with pressure and the three explosion limits in the reaction between H₂ and O₂.
- (iv) For the thermal decomposition of acetaldehyde, show that $\frac{d}{dt}[CH_4] = k[CH_3CHO]^{\frac{3}{2}}$

(b) Attempt any one of the following:

- (i) On the top of a certain mountain, the atmospheric pressure is 530 mm Hg and the pure water boils at 360 K. A climber finds that it takes 300 minutes to boil an egg as against 3 minutes at 370 K.
 - (1) What is the ratio of the rate constant k_{370} / k_{360} ?
 - (2) Calculate the energy of activation for the reaction that occurs when the egg is boiled assuming that the pre-exponential factor A remains constant.
 - (ii) Consider the following consecutive reaction:

$$R_1 \xrightarrow{k_1 \odot R_2} R_2 \xrightarrow{k_2} R_3.$$

where k_1 and k_2 are the rate constants for a first order reaction. If $k_1:k_2=1.0:0.15$ and $k_1=4.0\times 10^{-2}$ min⁻¹, then calculate the time required for the concentration of R_2 to reach a maximum.

4. (a) Attempt any two of the following:

- (i) Derive an expression for the kinetics of reactions in the solid state for spherical particles.
- (ii) Derive an expression for the rate law of kinetics of reactions in solid state.
- (iii) Discuss with mathematical expression the enzyme inhibition by competitive method.

4