Msc. II - Sem. IV - Oct 2016 Organic Chemistry-paper III

QP Code: 76703

(2½ Hours)

[Total Marks: 60

N. B.: (1) All questions are compulsory.

(2) Figures to the right indicate full marks.

(a) Answer any two of the following:-

(i) Complete the following reactions:-

conc HNO3 + conc H2SO4

(II)

NaOEt, EtOH (IX) Me

(ii) Give two methods of synthesis of pyrimidine and discuss its electrophilic substitution reactions.

(iii) How quinoline synthesised by

ONI) Doebner-Miller synthesis

(II) The Friedlander synthesis?

 λ lso explain, its reactivity towards nucleophiles.

- (I) Give Traube synthesis of purine.
- (II) Explain the following:-
 - (A) Electrophilic substitution in indole takes place at 3-position.

[TURN OVER

DW-Con.843-16.

Scanned by CamScanner

- (B) The diazines are weaker bases than pyridine
- (C) The 1-position in isoquinoline is strongly activated than 3-position for a nucleophilic attack.
- (b) Answer any one of the following:-
 - (i) (I) Give any two methods of synthesis of indole.
 - (II) What is the action of the following reagents on N-methylindole?
 - (A) t-Buli, THF, O°C then ICH2CH2I

(B) $HCON(CH_3)_2 + POCl_3$, 5°C then H_2O

(ii) Complete the following reactions:-

Br2/AICI3

COOCHA COOCHa

(a) Answer any two of the following:-

Give the occurence, biological role and structural features of steroidal hormones.

(ii) Discuss the general structure of steroids. Give the occurence and biological functions of bile acid.

8

QP Code: 76703

4

8

- (iii) How is 16-DPA synthesised from cholesterol?
- (iv) Give the synthesis of androsterone from 16-DPA.
- (b) Answer any one of the following:
 - (i) How is 16-DPA converted to oestadiol?
 - (ii) Write the synthesis of jasmolone. Give the structure of
- (a) Answer any two of the following:
- (i) Write the degradative evidences to establish the structure of penicillin.

 (ii) State the biological importance of form synthesis of the s
 - (ii) State the biological importance of folic acid and give the synthesis of vitamin B₂.
 (iii) State the sources and biological importance of (I) vitamin K₁ (II) vitamin D and give the synthesis of vitamin K₁ from 2-methyl-1 4-naphthaguings.
 - - 2-methyl-1, 4-naphthaquinone and phytol.
 - (iv) Give the synthesis of vitamin B₆ from ethox acetylacetone and cyanoacetamide.
 - (b) Answer any one of the following:-
 - (i) Give the synthesis of (I) D-pencilkamine and (II) tert-butylphthalimide malonaldehyde. How is penicillin synthesised from these compounds?
 - (ii) Give the synthesis of vitamin B₁ along with the preparation of one intermediate used in the synthesis.
 - (a) Answer any two of the following:-
 - (i) Explain the COSY technique with a suitable example.
 - (ii) Sketch the proton decoupled ¹³C NMR spectrum and DEPT spectra of the following compounds:
 - (I) 2-chloroethanol
 - (II) Authyl phthalate
 - (iii) Draw a schematic diagram of the HETCOR spectrum of ⇔ĩodobutane.
 - Calculate ¹³C NMR chemical shift for all the aromatic carbons using the incremental shifts of the aromatic carbon atoms table given below, for the following compounds:
 - (I) 2-bromoanisole
 - (II) 1,3-dinitrobenzene

[TURN OVER

DW-Con.843-16.

	Increments in ppm			
Substituent	ipso	ortho	meta	para
Br	-5.4	3.4	2.2	-1.0
OCH ₃	31.4	-14.4	1.0	-7.7
NO ₂	19.6	-5.3	0.9	6.0

(b) Answer any one of the following:-4.

(i) An organic compound has the molecular formula $C_9H_{16}O_{40}$. Identify the compound and justify your answer using the spectroscopic data given below:

IR: 1740 cm⁻¹

1H NMR: 80.77 Identify the compound and justify your answer using the spectroscopic data given below:

IR: 1740 cm⁻¹

¹H NMR: δ 0.75 (t, 3H), 0.85 (t,6H), 1.8 (m, 2H)

3.15 (t, 1H) and 4.1 (q, 4H) ppm.

 13 C NMR : δ 11, 13, 21, 53, 61 and 170 ppm_C

(ii) Explain the principle of fluorescence. Give the application of NMR in medicine.

Answer any four of the following:-5.

(a) Give two methods of preparation of coumarin. What is the action of CH3MgBr on coumarin?

(b) How will you prepare pyridazine from a 1,4-dicarbonyl compound? Explain giving an example its reactivity towards nucleophiles.

(c) How is exaltone synthesized?

(d) Write the synthesis of progesterone.

(e) Give the synthesis Expyrethrin-I.

(f) Give the sources and biological importance of tocopherols and give the synthesis α a-tocopherol

(g) The following chemical shifts were observed in the ¹³C NMR of butylethy ether, δ 13.5, 15.0, 19.4, 32.1, 66.0 and 70.1 ppm. Match the chemical shifts with the appropriate carbons and justify your answer.

(h) Discuss the applications of ESR spectroscopy.

12