N.	В.	:	(1)	All	questions	are	compulsory
14.	D,	•		All	questions	are	compulsory.

- (2) Figures to the right indicate full marks.
- (3) The use of a log table or a non-programmable calculator is permitted.
- 1. (a) Attempt any two of the following:-

8

- (i) State the reasons for obtaining incorrect analytical results. How can one correct the results?
- (ii) How is sample register maintained? What are the points to be documented regarding a particular sample in the register?
- (iii) Explain the "method validation" of analytical processes.
- (iv) What is sampling scheme? How does it varies with bulk size?
- (b) Write a detailed note on 'Calibration of Measurement'.

OF

(b) Give an account of acceptance criteria of sample.

.

2. (a) Attempt any two of the following:-

8

- (i) Explain the uncertainty evaluation process with reference to specification and identification.
- (ii) Explain the terms "Limit of Detection" and "dynamic range".
- (iii) What is FDA? What is its role in pharma and food industry?
- (iv) How does S/N ratio affect the sensitivity and the detection limit of the instrument?
- (b) Three measurements and their uncertainties are as follows:-

Measurements: a = 11.38, b = 9.89, c = 10.29

Uncertainties: a = 0.012, b = 0.011, c = 0.008If the final measurement is of the two XX

If the final measurement is of the type Y = a + b + c, calculate the combined uncertainty in the measurement of Y.

OR

(b) The following data in 'g' were obtained for the replicate weighing of a 2.000 g standard weight on a balance:
2.003, 1.995, 2.001, 2.005, 2.006, 1.999, 2.007, 1.998, 2.007
Assuming the noise is random, calculate the signal to noise ratio for

the said balance.

3.	(a)	Atte	empt any two of the following:-	8
			(i) Describe liquid ion exchangers.	•
	•	٠.	(ii) What do you mean by critical and supercritical state of the	
	43	٠.	matter?	
		((iii) Give an account of "inorganic ion exchangers".	
			(iv) What are chelating resins? Describe their applications with	
			appropriate examples.	
	· (b)	Cal	lculate the amount in 'mg' of sodium and calcium retained by	4
,	. ()	4.1	50 g of the cation exchange resin with an exchange capacity of	٠.
			50 m mol/g of the resin. (at. wt. Na = 23, Ca = 40)	
	•,		OR	
•	(b)	Exp	plain the role of suppressor column in ion chromatography.	4
•	•	•		•
4.	(a)	Att	tempt any two of the following:	8
			(i) Why is CO ₂ the supercritical fluid of choice?	
			(ii) Write note on "inorganic molecular sieves".	
		. ((iii) Describe the different modes of elution with respect to affinity	
٠.	•		chromatography.	
			(iv) What is the difference between gel permeation chromatography	
			and size exclusion chromatography?	
	(b)	Dis	scuss the principle and applications of inverse gas chromatography.	4
			OR	
•	(b)		th the help of a neat schematic diagram, explain the setup used in	4
		the	supercritical fluid chromatography with special reference to the	
		fun	nction of each component.	
- 1				
5.	Att	empt	t any four of the following:-	12
		(i)	Explain the terms "quality assurance" and "quality control" with	
			reference to the chemical industry.	
		(ii)	What is meant by random sampling?	
u.	((iii)	How is signal to noise ratio enhanced by	
			(a) Filtering (b) Integration.	
	7	(iv)	Elaborate the term 'Flicker Noise'.	
		(v)	State the applications of ion chromatography.	
ı		(vi)	Give an account of non aqueous ion exchangers.	Ĩ
•	.(vii)	Discuss the retention behaviour in exclusion chromatography.	
	7)	riii)		
		4050	molecular weight of polymers.	