N.B.: (1) All questions are compulsory.

- (2) Figures to the right indicate full marks.
- 1. (A) Answer any two of the following:
 - (a) What is Hell-Volhard-Zelinsky reaction? Give its mechanism with a suitable example.
 - (b) Predict the product and name the following reactions:

(c) Complete the following reaction, name it and explain its mechanism

(d) (i) Give the structure of X and Y under the given reaction conditions:

- (ii) Give a complete reaction to represent acylation of enolate ions.
- (B) Answer any one of the following:
 - (a) Discuss Michael addition with mechanism
 - (b) Complete the following reaction and explain its mechanism.

- 2. (A) Answer any two of the following:
 - (a) What is Schmidt rearrangement? Explain its mechanism.

TURN OVER

MG-Con. 5691-15.

- (b) Name the following reactions and write the structure of the products.
 - $(i) \stackrel{\text{H}}{\mapsto} \longrightarrow ?$
- (c) What is Favorskii rearrangement? Give its mechanism.
- (d) Complete the following reactions and name them.
 - (i) $Ac_2O \rightarrow 7$
 - (ii) $NH_2 \xrightarrow{HNO_2} ?$
- (B) Answer any one of the following:-
 - (a) What is olefin metathesis? Give one example for each of the following.
 - (i) cross metathesis (ii) ring closing metathesis
 - (b) Predict the products and name the following reactions.

(i)
$$\frac{1002}{\text{EtoH}}$$
 $\frac{\text{KCN}}{\text{EtoH}}$ $\frac{7}{100}$

(ii)
$$R-cH_2-c-R'$$
 $KOEE$ 7

MG-Con. 5691-15.

[TURN OVER

- 3. (A) Answer any two of the following:
 - (a) Match the following and explain:

 λ max (nm) :- 221, 249, 233 and 258

(Note: Increments for alkyl substituents on enone chromophore: $\alpha = 10$ mm, $\beta = 12$ nm, γ and higher = 18 nm)

- (b) Explain the following in IR spectroscopy with suitable examples
 - (i) vibrational coupling
 - (ii) study of hydrogen bonding
- (c) Complete the following reactions with mechanism:

- (d) Explain the following:
 - (i) Comparative nucleophilicity of ethoxide and t-butoxide ions.
 - (ii) Comparative reactivity of 1-chloropropene and 3-chloropropene to S_N1 reactions.
- (B) Answer any one of the following:
 - (a) Which of the following compounds will show a lower C=O stretching frequency in IR spectroscopy and why?

(b) 2, 4, 6 - Trinitrochlorobenzene undergoes hydrolysis easily in hot water. Explain based on the mechanism of the reaction.

(TURN OVER

MG-Con. 5691-15.

- 4. (A) Answer any two of the following:
 - What is vicinal coupling in NMR spectroscopy? Mention two factors that affect the vicinal coupling constant.
 - Explain the term 'long range coupling' with an example.
 - (b) On the basis of NMR spectroscopy how will you distinguish between:
 - (i) cis and trans stilbene?
 - inter and intramolecular hydrogen bonding? (ii)
 - (c) Explain the fragmentation pattern of the following in mass spectrometry:
 - pentanal (i)
 - (ii) n-butylbenzene
 - (d) Explain the following in mass spectrometry:
 - (i) Base peak
 - (ii) Nitrogen rule
 - (B) Answer any one of the following:
 - A compound with molecular formula $C_9H_{10}O_2$ shows following spectral data:

IR (cm⁻¹)

1740 (s), 1220 (s), 750 (m), 700 (m) PMR δ (ppm) : 1.96 (s, 3H), 5.0 (s, 2H), 7.2 (m, 5H)

91, 65, 43

m/zDeduce the structure of compound.

- (b) Explain the following in mass spectrometry
 - (i) retro Diels Alder reaction
 - (ii) ortho effect:
- 5. Answer any four of the following:
 - (A) Predict the product and write the mechanism of the following reaction:

(B) (a) Complete the following reaction and name it

MG-Con. 5691-15.

TURN OVER

12

(b) Predict the product of the following reaction:

- (C) Give the mechanism of Dienone-phenol rearrangement
- (D) Suggest the mechanism of the following reaction.

- (E) The $n \rightarrow \pi^x$ transition of acetone appears at 279nm in hexane and at 264 nm in water. Explain.
- (F) Explain the B_{AC²} mechanism of ester hydrolysis.
- (G) Explain the magnetic anisotropy of carbonyl group.
- (H) What is the most characteristic feature of the mass spectra of compounds containing one bromine atom?

MG-Con. 5691-15.