(2½ Hours)

[Total Marks: 60

N. B.: (1) All questions are compulsory.

- (2) Figures to the right indicate full marks.
- 1. (a) Answer any two of the following:-

8

(i) Complete the following reactions:

(II)
$$\frac{\text{tno}_2 \text{ BF}_4}{\text{cH}_3 \text{ cn}_7 \text{ reflux}}$$
?

(II) $\frac{\text{HNO}_3, \text{ cH}_3 \text{ co})_2\text{O}}{\text{-}70^{\circ}\text{C}}$?

(III) $\frac{\text{HNO}_3, \text{ cH}_3 \text{ co})_2\text{O}}{\text{-}70^{\circ}\text{C}}$?

(III) $\frac{\text{Ph} \text{ Mg Br}_7, \text{ Ni}(\text{O})}{\text{Ph} \text{ Mg Br}_7, \text{ Ni}(\text{O})}$?

(IV) $\frac{\text{Ph} \text{ Mg Br}_7, \text{ Ni}(\text{O})}{\text{2}) \text{ KMnO}_4}$?

- (ii) (I) Explain the following:-
 - (A) Electrophilic substitution in quinoline and isoquinoline takes place in the homocyclic ring.
 - (B) Pyridine N-oxide undergoes both electrophilic and nucleophilic substitution reactions.
 - (II) Give any one method of preparation of quinoline and isoquinoline.
- (iii) How will you prepare pyrazine from
 - (I) 1,2-dicarbonyl compound
 - (II) α-aminoketone?

Discuss the electrophilic substitution reactions of diazines.

TURN OVER

- (iv) (I) Give any two methods of synthesis of indole.
 - (II) Complete the following reactions:-

- (b) Answer any one of the following:
 - (i) (I) Explain giving examples the nucleophilic substitution reactions of diazines.
 - (II) Discuss electrophilic substitution reactions of pyridine Noxide.
 - (ii) Complete the following reactions:-

$$(I) \qquad \frac{\text{Li Al H}_{4},}{\text{Et}_{2}O} \qquad ?$$

[TURN OVER

8

8

8

- 2. (a) Answer any two of the following:-
 - (i) Give the occurence, biological role and structural features of sterols.
 - (ii) Write a note on steroidal alkaloids.
 - (iii) How is cholesterol converted to 16-DPA?
 - (iv) Give the synthesis of testosterone from 16-DPA.
 - (b) Answer any one of the following:-
 - (i) How is androsterone synthesised from 16-DPA?
 - (ii) Give the synthesis of cinerolone. Give the structure of cortisol.
- 3. (a) Answer any two of the following:-
 - (i) (I) State the sources and biological importance of (A) biotin (B) vitamin K₁
 - (II) Give the synthesis of vitamin K₁
 - (ii) Explain the sources and biological importance of vitamin B₆.

 How will you convert ethylester of N-formyl-DL-alanine to vitamin B₆.
 - (iii) How are vitamins classified? Outline the synthesis of riboflavin.
 - (iv) Write the degradative evidences to establish the structure of penicillin.
 - (b) Answer any one of the following:-
 - (i) Explain the biological importance and give the synthesis of vitamin B₁.
 - (ii) DL-penicillamine and tert-butylphthalimide malonaldehyde are the intermediates required for the synthesis of penicillin. Give the synthesis of these intermediates.
- 4. (a) Answer any two of the following:-
 - (i) Calculate ¹³C NMR chemical shifts for all the aromatic carbons using the incremental shifts of the aromatic carbon atoms from the table given below, for the following compounds.
 - (I) 2-nitrophenol
 - (II) 4-nitroaniline

	Increments in ppm			
Substituent	ipso	ortho	meta	para
NO ₂	19.6	-5.3	0.9	6.0
OH	26.6	-12.7	1.6	-7.3
NH ₂	19.2	-12.4	1.3	-9.5

TURN OVER

4 .

12

- (ii) Explain the HETCOR technique with a suitable example.
- (iii) State the number of ¹³C peaks and assign the multiplicity of each one in ¹³C proton decoupled NMR spectrum in the following compound.
 - (I) CF₃CH₂OH

(II) $CH_3PO(OCH_3)_2$

- (iv) How will you distinguish between (E)-2-bromo-2-butene and (Z)-2-bromo-2-butene using NOESY spectrum?
- (b) Answer any one of the following:
 - (i) Draw the proton decoupled, DEPT-45, DEPT-90 and DEPT-135 of the compound, ethyl 2-nitropropanoate using following ¹³C NMR values:

 δ 14 , 16 , 63 , 82 and 165 ppm.

- (ii) What is ESR spectroscopy? Discuss its principle. Give the applications of NMR spectroscopy in medicine.
- Answer any four of the following:
 - (a) How is coumarin synthesised,
 - (i) by Pechmann synthesis
 - (ii) using o-hydroxybenzaldehyde and acetic anhydride?
 - (b) (i) Give Traube synthesis of purines.
 - (ii) What is the action of,
 - (I) CH₂I, CH₂OH, 100°C
 - (II) conc HNO₃, AcOH, 120°C on purine.
 - (c) How is exaltone synthesised?
 - (d) How is oestrone converted to oestriol?
 - (e) (i) State the sources and biological importance of
 - (I) α-tocopherol
 - (II) Vitamin B₁₂
 - (ii) What are natural insecticides?
 - (f) Give the synthesis of pyrethrin-I.
 - (g) Explain the principle of fluorescence spectroscopy.
 - (h) A compound C₀H₁₀O exhibits the following signals in ¹³C NMR spectrum:

 δ 8.2 (q), 31.6 (t), 128.3 (d), 128.6 (d) 132.6 (d), 137.2 (s) and 200 (s).

Predict the structure and justify your answer.