(2 ½ Hours)

[Total Marks :60

N.B.: (1) All questions are compulsory

(2) Figures to the right indicate full marks.

1 (A) Answer any two of the following:-

(a) Predict the products and name the following reactions:

(b) Complete the following reaction, name it and explain its mechanism

- (c) Explain the mechanism of the reaction of phenylacetic acid with Br₂ and PBr₃ followed by hydrolysis and name the reaction.
- (d) Write the mechanism of Mannich reaction and give one additional example of the reaction.

(B) Answer any one of the following :-

- (a) Explain the mechanism of Robinson annulation.
- (b) Predict the major products A and B and explain their formation.

[TURN OVER]

VF-Con. 6394-15.

- 2. (A) Answer any two of the following:
 - (a) Complete the following reaction and give its mechanism.

- (b) What is Von Richter rearrangement? Explain its mechanism.
- (c) Name the following reactions and predict the products.

(d) Name the following reactions and predict the major products

- (B) Answer any one the following:-
 - (a) Explain the following rearrangments with one example each.
 - (i) Cope
 - (ii) Curtius

[TURN OVER]

(b) Predict the products and name the following reactions.

3. (A) Answer any two of the following:

(a) Explain the UV spectral data of 4- methylpent-3-en-2-one taken in different solvents as follows:

 λ_{max} (nm): 230, 327 in n-hexane 245, 305 in water

- (b) How are the following compounds distinguished using IR spectroscopy
 - (C₆H₅CO)₂O, C₆H₅COOH and C₆H₅COCH₃
 - (ii) ortho and para hydroxyacetophenones?
- (c) Explain the following mechanisms with suitable examples.
 - (i) $S_N cA$
 - (ii) S₁2
- (d) Explain the following statements:
 - (i) Ethyl iodide reacts with hydroxide ion faster in dimethyl sulfoxide than in water.
 - (ii) Iodide ion is a good nucleophile and a good leaving group.

. B) Answer any one of the following :-

- (i) What are overtone and combination bands in IR spectra? 1 (1)
 - (ii) Explain the importance of the finger print region in IR spectroscopy.

(b) Explain the following with respect to S_H reactions.

- (i) effect of NGP on stereochemistry
- (ii) tele substitution.

[TURN OVER]

4

VF-Con. 6394-15.

	C41 C 11 - 1	
(5) (5)	swer any two of the following:	
(a)	Explain the following in NMR spectroscopy	4
	(i) spin-spin coupling	
71.S	(ii) first order spectra	4
(b)	On the basis of NMR specroscopy how will you distinguish between	4
	(i) axial and equatorial protons in cyclohexane	
	(ii) inter and intramolecular hydrogen bonding?	
(c)	Explain the fragmentation pattern of the following in mass spectrometry	4
	(i) n- propylbenzene	
	(ii) benzyl alcohol	
(d)	Explain the following in mass spectrometry	4
	(i) McLafferty rearrangement	
	(ii) Nitrogen rule.	
(B) An	swer any one of the following:	4
(a)	A compound (MF = $C_8H_8O_2$) shows the following spectral data:	
	$UV \lambda_{max} : 250 \text{ nm}$	
	$IR \overline{\gamma}$: 1670 cm ⁻¹	
	PMR δ : 3.9 (s, 3H), 6.9 (d, J = 8 Hz, 2H), 7.8	
	(d, J = 8Hz, 2H), 9.8 (s, 1H) ppm.	
	Deduce the structure of the compound.	
(b)	Explain the following in mass spectrometry with one example each	4
(0)	(i) retro Diels Alder reaction	
	(ii) ortho effect	
	(II) Ottilo effect	
S. Attemp	t any four of the following:-	12
(a)	Write the mechanism of the reaction between acetophenone and excess	
	iodine in NaOH	
(b)	Predict the product and write the mechanism of the following reaction.	
(0)	Tredict the product and	
	1-10 SCH-DNa 7	
	2) C1 C00 C2 H5	
	a) cl coo GHs	

(c) Explain the mechanism of Lossen rearrangement.

[TURN OVER]

(d) Suggest a mechanism for the following reaction.

(e) Calculate the expected λ_{max} for the following:

- (f) Explain the A_{AL}1 mechanism of ester hydroysis
- (g) Define the following terms in mass spectrometry
 - (i) Parent ion
 - (ii) Metastable ion
 - (iii) Base peak
- (h) Explain the Karplus curve and its significance in NMR spectroscopy