(2½ Hours)

[Total Marks: 60

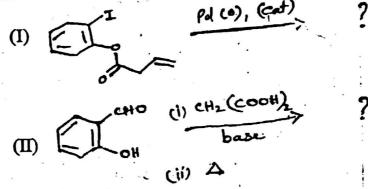
8

N.B.: (1) All questions are compulsory.

- (2) Figures to the right indicate full marks.
- 1. (a) Attempt any two of the following:—
 - (i) Complete the following reactions:

(II)

$$H_{3}C_{2}OOC$$
 $H_{3}C_{1}OOC$
 $H_{3}C_{1}OOC$
 $H_{3}C_{1}OOC$
 $H_{4}C_{1}OC$
 $H_{2}C_{1}OOC$
 $H_{2}C_{1}OOC$
 $H_{2}C_{1}OOC$
 $H_{2}C_{1}OOC$
 $H_{2}C_{1}OOC$
 $H_{2}C_{1}OOC$
 $H_{2}OC$
 $H_{2}C_{1}OOC$
 $H_{2}OC$
 $H_{3}C_{1}OOC$
 $H_{3}C_{1}OOC$
 $H_{4}COOC$
 $H_{4}COOC$


(ii) Give the synthesis of pyridine. Explain why electrophilic substitution in pyridine takes place preferentially at positions 3 or 5?

(iii) How is purine synthesised? Complete the following reaction:—

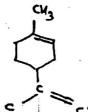
(iv) Discuss the reactivity of indole. What is the action of Zn/HCl, Li/NH₃ and Pt/CH₃COOH on indole?

- (b) Answer any one of the following:— (i) Give any two methods of synthesis of 1, 3, 5-triazine.

 - (ii) Complete the following reactions:

- 2. (a) Answer any two of the following:
 - (i) What are corticosteroids? Explain the stereochemistry of steroids and give the structure of progesterone.
 - (ii) How is 16-DPA synthesised from cholesterol?
 - (iii) Give the synthesis of cinerolone.
 - (iv) Give synthesis of testosterone from 16-DPA.
 - (b) Answer any one of the following:—
 - (i) Discuss the general structure, classification, occurrence and biological role of bile acids. Give the structure of lithocholic acid.
 - Write a note on steroidal alkaloids and give the structure of oestrone.
- 3. (a) Answer any two of the following:-
 - (i) State the biological importance of vitamin B₂ and write its synthesis.
 - Give the analytical evidence for the presence of thiazolidine ring in (ii) penicillin-G.
 - What are natural insecticides? How are they advantageous over their synthetic analogues? State the sources of pyrethrums and write the structure of pyrethrin-I.
 - (iv) Answer the following:—
 - (I) State the sources and biological importance of vitamin H (β-biotin).
 - What are antibiotics? Write the structure of Cephalosporin-C.
 - (b) Answer any one of the following:
 - State the biological importance of vitamin B₆ and write its synthesis from ethyl ester of N-formyl-DL-alanine.
 - (ii) Answer the following:
 - Write the synthesis of tert-butylphthalimide malonaldehyde.
 - Write the synthesis of vitamin K₁.

TURN O


8

(a) Answer any two of the following:—

(i) Answer the following:

- (I) Indicate the number of ¹³C signals in the proton decoupled spectrum and assign the multiplicity for each signal in the off-resonance decoupled spectrum for the following compounds:
 - (A) 1,4-dibromobenzene (B) toluene

(II) For the following organic molecule,

state the number of ¹³C signals (with the phase of the signals) in DEPT-135,

DEPT-90,

DEPT-45,

and in the proton decoupled spectrum.

(ii) The ¹H NMR spectrum of 1-propanol shows the following signals:

 δ (ppm): 3.5 (t), 3.0 (s, D₂O exchangeable), 1.5 (m) and 0.8 (t). Sketch the COSY spectrum of the above compound using the data given above.

(iii) Answer the following:—

- (I) A compound having molecular formula C_2H_2 BrCl exhibits 2 doublets (J = 16 Hz) in its ¹H NMR spectrum. Suggest the structure and justify your answer.
- (II) A compound having molecular formula C_6H_8 is highly symmetrical and shows 2 singlets in noise decoupled ¹³C spectrum. The off-resonace decoupled spectrum shows only a triplet and a doublet. Suggest the structure and justify your answer.
- (iv) What is ESR spectroscopy? Discuss its principle and state the applications.
- (b) Attempt any one of the following:

(i) Answer the following:—

(I) State the number of ¹³C peaks and assign the multiplicity to each one in ¹³C proton decoupled spectrum in the following compounds A and B containing ¹⁹F and ³¹P respectively.

(II) Discuss the applications of NMR spectroscopy in the field of medical science.

TURN OVER

QP Code:

The ¹H NMR spectrum of 2-nitropropane shows the following signals:—

 $\delta(ppm) : 1.56$ (d), 4.66 (septet) Its 13 C NMR spectrum shows peaks at δ (ppm): 21 and 79. Draw a sketch of ¹H - ¹³C HETCOR spectrum, showing the positions of cross-peaks you would expect to observe, using the data given above.

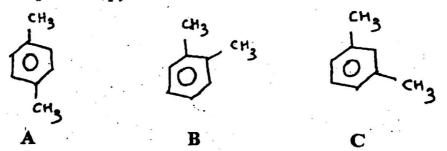
12

Attempt any four of the following:-

- (a) Give the Doebner-Miller synthesis of 2-methylquinoline.
- (b) Outline the general route of synthesis for pyrazine.
- (c) Give the synthesis of oestriol from 16-DPA.
- (d) Give the synthesis of exaltone.
- (e) Write the reactions involved in the preparation of phenoxymethylpenicillin from:

(f) Write the synthesis of α -tocopherol.

(g) Two isomeric compounds A and B have molecular formula C7H2O and exhibit the following spectral data:—


Compound A:

PMR: δ : 2.34 (3H, s), 6.67 (2H, d, J = 8.8 Hz); 7.12 (2H, d, J = 8.8 Hz) 7.95(1 H, s, D₂O exchangeable)

Compound B:

PMR: δ : 7.92—7.2(5 H, m), 5.5(1 H, s, D, O-exchangeable), 4.3 (2H, s) Assign suitable structures to A and B and justify your answer.

How will you distinguish between the following three isomers A, B and C using ¹³C NMR spectroscopy?

Assign 13C chemical shift to all the aromatic carbon atoms in compound C using the following incremental shift table.

substituent	increments in ppm			
	ipso	0 –,	m –	p –
-CH ₃	+ 9.3	+ 0.7	- 0.1	- 2.9