(2½ Hours)

[Total Marks: 60

N. B.: (1) All the questions are compulsory.

(2) Figures to right indicate full marks.

1. (a) Attempt any two of the following:-

8

- (i) Give an account of Grunwald-Winstein equation.
- (ii) Explain the phenomenon shown by p-substituted 2-chloro-2-phenyl propane containing electron donating groups during its solvolysis. How can structure-reactivity be established for such compounds?
- (iii) The Taft equation is a structure reactivity equation which correlates only field effects. Explain.
- (iv) Match the following and justify your answer:-
 - (A) Ionisation of p-substituted phenols with electron withdrawing groups
- (1) Negative σ_x magnitudes
- (2) Show ctraight line with σ_{*} values.
- (B) Acid catalysed hydrolysis of m- and p- substituted ethyl benzoates
- (3) Insensitive towards substituents effect.
- (C) Negatively charged reaction centre
- (4) Positive sign of magnitude of reaction const ρ .
- (D) Electron donating groups

4

- (b) Attempt any one of the following:-
 - (i) Give an account of Yukawa Tsuno equation.
 - (ii) Discuss any one example where deviation from linear-Hammett plots helps in detection of change of mechanism.

8

- 2. (a) Attempt any two of the following:-
 - (i) Explain the organization and recognition as exhibited by enzymes for their catalytic activity with example.
 - (ii) What are molecular tweezers? Discuss their salient structural features with examples.
 - (iii) What are cyclophanes? Give different types of cyclophanes.
 - (iv) Explain the strategies employed for antibody catalysis in terms of molecular recognition.
 - (b) Attempt any one of the following:-
 - (i) Give synthesis and receptor properties of cryptands.
 - (ii) What are molecular clefts? Discuss the properties of two dimensional molecular clefts.

[TURN OVER

8

- 3. (a) Attempt any two of the following:-
 - (i) Illustrate with examples the principle in the use of chiral shift reagents for determination of enantiotopic composition using NMR spectroscopy.
 - (ii) Explain axial α-haloketone rule and give two applications.
 - (iii) Explain any two empirical rules for correlative configurational assignment based on optical rotation.
 - (iv) Discuss the resolution of racemate through kinetic asymmetric transformation.
 - (b) Attempt any one of the following:-
 - (i) Complete the following reaction, draw Newmann projection of the products and indicate which isomer predominantes.

- (ii) Explain any two applications of octant rule.
- 4. (a) Attempt any two of the following:-
 - (i) Explain 1, 2-asymmetric induction in addition of RMgX to carbonyl compounds.
 - (ii) Complete the following reaction, name the reaction involved and give its mechanism.

HOOC
$$C = C$$

$$H_{20}$$

$$H_{20}$$

- (iii) Give an account of sharpless epoxidation of allylic alcohols.
- (iv) Explain asymmetric synthesis of an aldol involving chiral aldehyde and achiral enolate.
- (b) Attempt any one of the following:-
 - (i) Discuss the use of chiral borane reagents for asymmetric reduction of prochiral carbonyl compounds.
 - (ii) Illustrate with suitable examples, how asymmetric Diels-Alder reaction can be achieved effectively?

TURN OVER

QP Code: **BV-14927**

5. Attempt any four of the following:-

12

- (a) Explain Swain-Scott equation used for determination of nucleopailicity scale.
- (b) How is steric parameter Es determined? Explain.
- (c) Explain the concept of molecular self-assembly.
- (d) What are cyclodextrins? Discuss their structural features.
- (e) Write informative note on circular birefringence.
- (f) Explain method of quasi-racemate for configurational assignment.
- (g) Give synthesis of L-DOPA by Monsanto process.
- (h) What is chiral pool strategy in asymmetric synthesis? Explain with one example.