Q.P. Code: 29463

[Time: 2:30 Hours]

[Marks: 60]

4

4

Please check whether you have got the right question paper.

- N.B: 1. All questions are compulsory.
 - 2. Figures to the right indicate full marks.
 - 3. Use of non-programmable scientific calculator is allowed.

Useful constants

$$\begin{array}{lll} c = 2.998 \; x \; 10^8 \; m.s^{\text{-}1} & e = 1.602 \; x \; 10^{\text{-}19} \, \text{C} \\ R = 8.314 \; J.K^{\text{-}1} \; \text{mol}^{\text{-}1} & k = 1.3811 \; x \; 10^{\text{-}23} \; J.K^{\text{-}1} \\ = 2.0 \; cal. \; K^{\text{-}1} \; \text{mol}^{\text{-}1} & \\ h = 6.626 \; x \; 10^{\text{-}34} \; Js & 1J = 6.24 \; x \; 10^{18} \text{eV} \\ m_e = 9.110 \; x \; 10^{\text{-}31} \; kg & 1eV = 8.06 \; x \; 10^3 \; cm^{\text{-}1} \\ N_A = 6.022 \; x \; 10^{23} \; \text{mol}^{\text{-}1} & 1amu = 1.66 \; x \; 10^{\text{-}27} \; kg \end{array}$$

1. A) Attempt any two of the following:

- i) What are exact differentials? Using thermodynamic relations, show that $\left(\frac{\delta C v}{\delta V}\right) = T\left(\frac{\delta^2 S}{\delta V. \delta T}\right) = T\left(\frac{\delta^2 P}{\delta T^2}\right)_V$
- ii) State third law of thermodynamics. How will you determine the absolute entropies of liquid using 3rd law?
- iii) What is Joule-Thomson effect? Describe it with an experiment and write the expression for Joule-Thomson coefficient in terms of van der waal's constant.
- iv) Define entropy. Write only the expression for entropy change involved in the process of melting, vaporization and sublimation.

1. B) Attempt **any one** of the following:

- i) Calculate the change in entropy when 1 g of water at 0°C is heated to 100°C and converted into steam at that temperature. Specific heat of water = 1.0 cal/g°C. Latent heat of vaporization of water at 100°C is 539 cal/g.
- ii) Calculate the Joule Thomson coefficient $(\mu_{J,T})$ for $CO_{2(a)}$ at 273K. The van der waal's constants **a** and **b** are 0.36 Nm⁴mol⁻² and 4.3 x 10⁻⁶ m³mol⁻¹ respectively. $C_p = 38.50 \text{ JK}^{-1} \text{ mol}^{-1}$

2. A) Attempt any two of the following:

- i) What are eigen functions and eigen values? Show that the eigen function of a Hermitian operator corresponding to different eigen values are orthogonal.
- ii) Write the characteristics of a well behaved function. Indicate which of the following wave functions are acceptable?
 - a) $\psi = \sin x$ b) $\psi = e^{-x}$
- iii) Explain degenerate and non-degenerate energy levels. Find the degree of degeneracy of energy level 19h² / 8ma².
- iv) For the Hermite differential equation

$$\frac{d^2F}{dy^2} - 2y\frac{dF}{dy} + \left(\frac{\alpha}{\beta} - 1\right)F = 0$$

Obtain the recursion formula.

Q.P. Code :29463

4

4

4

2. B) Attempt **any one** of the following:

i) If $\widehat{A} = \frac{d}{dx}$, $\widehat{B} = \frac{d^2}{dx^2}$ and $f(x) = \cos 3x$ then show that \widehat{A} and \widehat{B} are commutative or non-commutative.

ii) The Hermite polynomials are derived from the generating function.

 $H_n(y) = (-1)^n e^{y^2} \frac{d^n}{dy^n} e^{-y^2}$

Calculate the value of the polynomial for n = 1 and n = 2.

3. A) Attempt **any two** of the following:

- i) Discuss the gas phase combustion reaction between H_2 and O_2 . Explain the term explosion limit and factors affecting it.
- ii) Explain the formation and decomposition of phosgene.
- iii) Obtain rate law expression for the thermal reaction $H_2 + Br_2 \rightarrow 2HBr$
- iv) Explain in brief the Rice-Ramsperger Kassel Marcus (RRKM) theory.

3. B) Attempt **any one** of the following:

- The following process follows the first order kinetics $X \xrightarrow{\textbf{20d}} Y \xrightarrow{\textbf{30d}} Z$ where 20d and 30d are the half life time of the reaction from X to Y and Yto Z respectively in days. At what stage of time will the concentration of Y become
- ii) On the top of a certain mountain the atmospheric pressure is 530 mm Hg and pure water boils at 360 K. A climber finds that it takes 300 minutes to boil an egg as against 3 minutes at 370 K.
 - i) What is the relation between rate of boiling the egg and time?
 - What is the activation energy for the reaction that occurs when egg is boiled, ii) given that the pre-exponential factor, A remains constant?

4. A) Attempt **any two** of the following:

- i) State the Debye-Huckel's limiting law and explain the terms involved. State any three merits of the law.
- ii) Explain the effect showing the dispersion of conductance at high frequencies.
- iii) Explain the construction and working of the molten carbonate fuel cell.
- iv) Explain the use of enzymes as electrodes.

4. B) Attempt **any one** of the following:

- i) Using Debye-Huckel limiting law, calculate the activity coefficient of sodium and sulphate ions and mean activity coefficient of 0.1m sodium sulphate solution at 298k (A = 0.509 at 298K)
- ii) Calculate the resting membrane potential for the following:

	\mathcal{C}	
Ion Species	Intra Cellular	Extra Cellular
	Conc in mM	Conc in mM
Na ⁺ V	15	145
C K+C	140	4.0

Given that 2.303RT/F = 61 at 298K.

Q.P. Code: 29463

15

5. Attempt **any five** of the following:

- a) Give the significance of Maxwell thermodynamic relations.
- b) Explain the term 'residual entropy' with a suitable example.
- c) Write a note on magnetic quantum number.
- d) What are the limitations of classical mechanics?
- e) Explain the term consecutive reaction with suitable example.
- f) Explain the principle of microscopic reversibility and detailed balance mechanism.
- g) Explain the time of relaxation for the ionic atmosphere and state the expression for the same.
- h) State the functions of the cell membrane.
