Q.P. Code:29470

[Time: $2\frac{1}{2}$ Hours]

[Marks: 60]

Please check whether you have got the right question paper.

N.B: 1. All questions are compulsory.

2. Figures to the right indicate full marks.

Q.1 a) An	nswer ANY TWO of the following:	
	i)	Derive expressions for the wave function of sp^3 hybrid orbitals using the concept of hybridization.	4
	ii)	On the basis of hybridization, explain the structures of Iodine heptafluoride and Xenon hexafluoride.	4
	iii)	Construct a labelled molecular orbital diagram for the divanadium molecule. Calculate the bond order and explain it's magnetic property.	4
	iv)	What are Van der Waals Forces? Discuss any two types of forces with examples.	4
Q.1 b) An	swer ANY TWO of the following:	
	i)	Discuss any two methods of detection of hydrogen bonding in the molecules.	4
	ii)	Explain the bonding in SF_6 molecule on the basis of molecular orbital theory. Draw the molecular orbital diagram showing the distribution of electrons in various molecular orbitals.	4
Q.2 a) At	tempt ANY TWO of the following:	
	i)	Give the systematic procedure for symmetry classification of molecules.	4
	ii)	Construct the group multiplication table for C_{2V} point group.	4
		Obtain matrix representation for rotation operation.	4
	iv)	On the basis of Symmetry Adapted Linear Combination (SALC), draw the molecular orbital diagram for ammonia molecule.	4
Q.2 b) At	tempt ANY ONE of the following:	
	7	Explain abelian and non abelian point group with the help of suitable example for each.	4
	ii)	Give and explain the character table for C_{3V} point group.	4
Q.3 a) At	tempt ANY TWO of the following:	
	i)	Discuss the fundamentals of band theory. On the basis of this theory, justify that an alkali metal is a good conductor of electricity.	4
6,500	ii)	Draw the structure of Nickel arsenide and explain it's salient features.	4
	iii)	Describe the precursor method for the preparation of inorganic solids. Mention it's merits and demerits.	4
	iv)	How are nanomaterials prepared by the sol-gel method? Explain with an example.	4
Q.3 b) At	tempt ANY ONE of the following:	
Z Z Z	i)	Discuss the origin of first Brillouin zone in inorganic crystals.	4
5,000 A	ii)	Explain the Langmuir-Blodgett method for the preparation of nanomaterials.	4

Q.P. Code :29470

4

4

12

Q.4 a) Attempt ANY TWO of the following:

- i) Explain the following methods for the detection of complex formation (1) Migration of the species in an electric field and abnormal transport number (2) pH metric study
- ii) Account for the following IR vibrational frequencies of complexes. Account for M-C stretching vibrations.

Complex	M-C stretching v in cm ⁻¹
$Ni(CO)_4$	422
$[Co(CO)_4]$	532, 439
$[Fe\ (CO)_4]$	550, 464

- iii) Draw and explain the Orgel diagram for the complex ion $[V(H_2O)_6]^{3+}$ and assign the electronic transitions.
- iv) Discuss the mole-ratio method for the determination of formation constant.

Q.4 b) Attempt ANY ONE of the following:

- i) The absorption spectrum of $[Ni(H_2O)_6]^{+2}$ shows peaks at 9,000 cm⁻¹, 14,000cm⁻¹ and 25,000 cm⁻¹. Assign the electronic transitions. Calculate 10Dq and Racah parameter for the complex ion. (B₀ for the free Ni⁺² ion =1034 cm⁻¹).
- ii)Explain the potentiometric method for the determination of formation constant of complexes.

Q.5 Answer ANY FOUR from the following:

- a) Draw the Lewis dot structure for nitrate ion. Give all possible resonating structures and calculate the formal charges. Predict the most favourable structure.
- b) Explain "HF forms stronger H-bond than H_2O , still ΔH_{vap} of HF is lower than of H_2O ."
- c) Discuss Mulliken's notation for irreducible representations.
- d) Explain the symmetry restriction on the dipole moment in molecule.
- e) Describe the Ceramic method for the preparation of inorganic solids.
- f) Explain the synthesis of nanomaterials using microorganisms.
- g) Discuss ESR spectra of $[Cu(en)_2(ClO_4)_2]$ complex.
- h) Explain the stepwise and overall formation constant for metal complexes.
