(21/2 Hours)

[Total Marks: 60

4

N.B. (1) All the questions are compulsory.

- (2) Figures to the right indicate full marks.
- (3) Use of non-programmable scientific calculator is allowed.

Useful constants:

C	=	$2.998 \times 10^{8} \text{ ms}^{-1}$			$1.3811 \times 10^{-23} \mathrm{JK^{-1}}$
		8-314 JK ⁻¹ mol ⁻¹			6·24 × 10 ¹⁸ eV
		$6.625 \times 10^{-34} \text{Js}$			$8.06 \times 10^{3} \text{ cm}^{-1}$
		$6.023 \times 10^{23} \text{mol}^{-1}$	1 atmosphere	=	$1.01325 \times 10^5 \mathrm{Nm^{-2}}$
e	=	$1.602 \times 10^{-19} \mathrm{C}$	M _e	=	9⋅110 × 10 ⁻³¹ kg
		14	. 0	=	16

1. (a) Attempt any two of the following:-

- (i) Explain the term exact differential. If T = f(P, V). Show that dT is an exact differential.
- (ii) What is Joule-Thomson effect? Prove that the enthalpy of the system remains constant in an adiabatic expansion.
- (iii) Give the expression for Gibbs free energy change and explain how it can be used to predict the possibility of a chemical reaction.
- (iv) State the characteristics of entropy. Giving reason, say which molecule of the pair given below has greater molar entropy under the same conditions.

(b) Attempt any one of the following:-

- (i) The enthalpy of reaction N₂ + 3H₂ ⇒ 2NH₃ at 27°C is 91940 J. What will be its value at 50°C? The molar heat capacities at constant pressure and 27°C for nitrogen, hydrogen and ammonia are 28.45, 28.32 and 37.07 J K⁻¹ mol⁻¹ respectively.
- (ii) Calculate the entropy change when one mole of ice at 273 K is converted to water at 373 K at one atmosphere. The molar heat of fusion of ice is 6002 J rnol⁻¹. Molar heat capacity in the given range of temperatures is 75.22 JK⁻¹ mol⁻¹.

2. (a) Attempt any two of the following:-

- (i) Define enthalpy. Show that the enthalpy of mixing of ideal gas at constant temperature and pressure is zero.
- (ii) Explain the significance of fugacity to study thermodynamics of real gases.

 How is it evaluated by graphical method?
- (iii) What is partial molal volume? How is it determined by intercept method? 4
- (iv) Explain with reference to free energy change, the role of ATP in biological system.

VS-Con: 1570-14.

I TURN OVER

4

4

4

- (b) Attempt any one of the following:-
 - (i) At 25°C, the density of 50 percent by mass ethanol-water system is 0.914 g cm⁻³. The partial molal volume of water in solution is 17.4 cm³ mol⁻¹. Calculate the partial molal volume of ethanol.
 - (ii) One mole of nitrogen gas is mixed with three moles of oxygen gas at 298 K to form a mixture at the final pressure of one atmosphere, the initial pressure of each being also one atmosphere. Calculate the molar entropy of mixing.
- 3. (a) Attempt any two of the following:—
 - (i) Explain the phase diagram for two component system of solid-gas involving hydrates of copper sulphate.
 - (ii) Explain phase diagram for two component system involving formation of a compound with congruent melting point.
 - (iii) Derive the kelvin equation of vapour pressure of the liquid droplets.
 - (iv) Draw and explain phase diagram for three component system involving formation of two pairs of partially miscible liquids.
 - (b) Attempt any one of the following:-
 - (i) Explain the phase diagram of ternary system of hydrated salt not de hydrated by second salt.
 - (ii) Explain the phase diagram of ternary system of double salt decomposed by water.
- 4. (a) Attempt any two of the following:
 - (i) Prove the validity of Debye-Hyckel limiting equation.
 - (ii) State and explain Debye-Huckel-Onsager equation.
 - (iii) Why fuel cells are an emerging technology? How can they become competetive with other power generating technologies?
 - (iv) Explain the process of adsorption of proteins onto metal surface from solution. 4
 (b) Attempt any one of the following:—
 - (i) Calculate the activity coefficient of Zn^{2+} and Cl^{-} in an aqueous solution of 2×10^{-3} m $ZnCl_2$. (A = 0.509 at 298 K.)
 - (ii) Calculate the value of resting membrane potential for the following at 298 K.

At 298 K
$$\frac{2.303 \text{ RT}}{\text{F}} = 60.0$$
.

VS-Con: 1570-14,

12

- Attempt any four of the following:-
 - (a) State the Third Law of Thermo dynamics. Why is it not applicable to supercooled
 - (b) Show the different stages involved in the conversion of tin from 293 K to 573 K. Melting point of tin is 505 K. Also give ΔS_{total} with the help of necessary expression.
 - (c) Explain one physical significance of chemical potential.
 - (d) Two ideal gases 1 and 2 are initially at the same temperature but at different pressures P_1 and P_2 respectively. If n_1 moles of gas 1 and n_2 moles of gas 2 are mixed
 - (e) Write the mathematical expression of B. E. T. equation. How is it used to determine the surface area of solid adsorbent?
 - (f) Sketch qualitatively the labelled phase diagram for ternary system of hydrated double salt decomposed by water.
 - (g) Draw the alkaline fuel cell and write the reactions occuring at anode and cathode.
 - (h) Explain the behaviour of conductance of strong electrolyte under high alternating current frequencies.