Chamishy Paper I : Physical chemisty

OP Code: 19163

	.11-
Total Marks: 60	- 11
(2½ Hours)	
물거리 그는 사람은 그녀는 그를 내용하는 것을 받는 것이 하는 것이 되었다. 그는 그는 그는	
N.B.: (1) All questions are compulsory.	10
N.B.: (1) All questions are established full marks. (2) Figures to the right indicate full marks.	~p.
(2) Figures to the Figure indicate (3) Use of non-programmable calculator is allowed.	SPOLAR
7	Ş
$e = 1.602 \times 10^{11} \text{ C}$	
$c = 2.998 \times 10^8 \text{ ms}^{-1}$ $k = 1.3811 \times 10^{-23} \text{ JK}^{-1}$	
$R = 8.314 \text{ J K}^{-1} \text{mol}^{-1}$ $1J = 6.24 \times 10^{18} \text{ eV}$	13
$h = 6.626 \times 10^{-34} \text{ Js}$ $1 \text{ eV} = 8.06 \times 10^3 \text{ cm}^{-1}$	
$h = 6.626 \times 10^{-3} \text{ J}$ $N_A = 6.023 \times 10^{23} \text{ mol}^{-1}$ 1 atmosphere = 1.01325×10 ⁵ Nm ⁻²	
$m_e = 1.602 \times 10^{-31} \text{ kg}$ $N = 14$; $H = 1.0 \text{ O} = 16$	
August and true of the following	
1. (a) Attempt any two of the following: (i) Explain the entropy changes that take place when a substance	4
/ undergoes phase Iransilions.	
(ii) Derive an expression to show the variation of enthalpy of a reaction	4
with temperature	
(iii) Explain the determination of absolute entropies in terms of heat	4
capacity.	
(iv) What is Joule-Thomson effect? How is it studied experimentally?	4
(b) Attempt any one of the following	
(i) Define inversion temperature and calculate its value for hydrogen	4
gas. The van der Waar's constants for hydrogen gas are: $a = 0.0245 \text{ Nm}^4\text{mp}\Theta$, $b = 2.67 \times 10^{-5} \text{ m}^3 \text{ mol}^{-1}$	
2 = 0.0245 Nm mps, b = 2.07 × 10 in mor	4
(ii) Hydrazine is a potential rocket fuel. Determine whether it can be synthesized from the following reaction at 298K	•
$NH_4NO_{3(g)} + SH_{2(g)} \rightarrow 3H_2O_{(g)} + N_2H_{4(g)}$	
The standard enthalpy change for the above reaction at 298K	
is - 3,1009 kJ. The standard entropies for NH ₄ NO _{3(s)} , H _{2(s)} H ₂ O _(s) and	
N.H., are 150, 130, 189 and 120 JK mol respectively.	×
2 (a) A#h	
2. (a) Attempt any two of the following:	
Define fugacity. How will you determine fugacity from equation of state?	4
Show that (p) $\Delta S_{mix} = -nR \sum_{i} x_i \ell n x_i$	4
Show that (p) $\Delta S_{mix} = -nR \sum_{i} x_i \ell n x_i$ (q) $\Delta H_{mix} = 0$ (iii) Derive Gibbs-Duhem-Margules equation. (iv) Give a brief account of chemical potential of real solutions.	
(iii) Derive Gibbs-Duhem-Margules equation.	4
(iv) Give a brief account of chemical potential of real solutions.	4
· · · · · · · · · · · · · · · · · · ·	
OR-Con. 1246-16.	

NIPO LAPSTA

2. (b) Attempt any one of the following:

- Calculate ΔG_{mix} , ΔH_{mix} and ΔS_{mix} at 25°C and 1 atmosphere when 10 moles of He are mixed with 20 moles of Ne.
- At 450°C and 600 atmosphere pressure, the equilibrium constant for the reaction $N_{2(g)} + 3H_{2(g)} \implies 2NH_{3(g)}$ is 4.516×10^{-5} . Calculate the degree of conversion of $N_{2(g)}$ and $H_{2(g)}$ to $NH_{3(g)}$, assuming that the system is a mixture of real gases. Fugacity coefficient are (ii)

 $\gamma_{N_{2(g)}} = 1.3238$, $\gamma_{H_{2(g)}} = 1.2874$, $\gamma_{NH_{3(g)}} = 0.8548$

3. (a) Attempt any two of the following:

- (i) Explain the phase diagram of two component system of solid gas involving formation of amino compounds.
- Draw and discuss the phase diagram of two component system in which the two components form a stable compound with incongruent .1017 [melting point.
- Draw and explain the phase diagram for three component system of liquids with the formation of two pairs of partially miscible liquids.
- Discuss the application of phase rule to ternary system of double salt decomposed by water.

Attempt any one of the following:

- Derived thermodynamically an expression for the Gibbs adsorption
- Derive thermodynamically the Laplace equation of pressure difference across curved surface.

4. (a) Attempt any two of the following:

- Discuss in brief the solid oxide fuel cell.
- (ii) What are membranes? Give the functions of cell membrane.
- Discuss, the Debye-Huckel limiting law applicable to electrolytic solution of appreciable concentration.
- (iv) Explain the relaxation effect for conductance of strong electrolytes.

(b) Attempt any one of the following:

Calculate the resting membrane potential for :

Ion species	Intracellular	Extracellular
. 11	concentration	concentration
r.	in mM	in mM
K+	155	4
Ca ²⁺	104	1.5

TURN OVER

12

Given:
$$\left(\frac{2.303RT}{F} = 61\right)$$

- Calculate the mean activity coefficient of 1.0×10-2 m ZnCl₂ in (ii) 5×10^{-3} m ZnSO₄ Solution (A = 0.509 for water at 298K)
- Attempt any four of the following:
 - Draw and explain the Maxwell's thermodynamic square. (i)
 - Explain how the standard molar entropies are dependent on structure of a compound with the help of suitable example.
 - What do you understand by the term thermodynamic excess function? (iii) Write the expression for excess Gibb's free energy and excess enthalpy.
 - Explain the term Exo-ergonic and Endo-ergonic reactions. (iv)
 - Explain the applications of phase rule to ternary systems of hydrate (\mathbf{v}) dehydrated by second salt.
 - Write mathematical expression of BET equation. How is it used to (vi) determine surface area of solid adsorbant?
 - Give the advantages of fuel cells over conventional cells. (vii)
 - Explain the Debye-Falkenhagen effect. (viii)