五

Q.P. Code: 29468

[Time: $2\frac{1}{2}$ Hours]

[Marks: 60]

Please check whether you have got the right question paper.

N.B:

- 1. All questions are compulsory.
- 2. Figures to the right indicate full marks.
- 3. Please check whether you have received the right question paper.

 Q. 1 a) Answer ANY TWO of the following. i) Using the concept of hybridization, obtain expressions for the wave function of sp hybrid orbitals. 	\$ 6 A
ii) Discuss the geometry of PCl ₅ and SF ₄ on the basis of hybridization. iii) What do you mean by electron deficient molecule? Explain the nature of bonding in diborane of the basis of hybridization.	4 n 4
the basis of molecular orbital theory. iv) Derive the equation of resonance energy showing the contributing resonance structure with the lowest potential energy.	
 b) Answer ANY ONE from the following: i) What are ion-dipole and dipole-dipole interactions? Give suitable examples. ii) Construct a labelled molecular orbital diagram for the V₂ molecule. Calculate the bond order at explain the magnetic behaviour of the molecule. 	4 nd 4
 Q. 2 a) Attempt ANY TWO of the following: i) Explain the optical activity in molecules on the basis of group theory. ii) Explain abelian and non abelian point group using suitable example for each. iii) Obtain matrix representation for rotation operation. iv) On the basis of Symmetry Adapted Linear Combination (SALC), draw the molecular orbital diagram for ammonia molecule. 	4 4 4 4
b) Attempt ANY ONE of the following: i) Construct group multiplication table for symmetry operations for C ₂ v point group. ii) What are irreducible representations? State their characteristics.	4 4
Q. 3 a) Attempt ANY TWO of the following: i) Discuss the fundamentals of band theory. On the basis of this theory, justify that Lithium metal is a good conductor of electricity.	4
ii) Draw the structure of TiO ₂ and explain it's salient features. iii) Describe the ceramic method for the preparation of inorganic solids. Mention it's merits and	4
demerits. iv) How are the nanomatenials prepared by the solvothermal method?	4
b) Attempt ANY ONE of the following:	
i) Explain the origin of first Brillouin zone in inorganic crystals. ii) Discuss the co-precipitation method for the preparation of nanomaterials.	4

Page 1 of 2

6921C724CB47AE789787B107B08FB053

Q. 4	 a) Attempt ANY TWO of the following: i) Explain the following methods for the detection of complex formation in solution. 1) Chemical test 2) Dissolution of an insoluble precipitate 					
	ii)	Explain the following IR data molecule/complex				
		CO	2145			200 F
		Mo (CO) ₆	2000			
		Mo(CO) ₃ (NH ₃) ₃	1855			270
	iii)	Draw and explain the Orgel diagram for the complex ion $[Fe(H_2O)_6]^{2+}$. Assign the electronic transitions.				
	 iv) Discuss the potentiometric method for the determination of formation constant. b) Attempt ANY ONE of the following: i) The spectral characteristics of high spin [CoF₆]⁴⁻ are: v₁ = 7, 150 cm⁻¹ v₂ = 15,200 cm⁻¹ v₃ = 19,200 cm⁻¹ Assign the electronic transitions. Find 10Dq, β and B'. Given B_o = 970cm⁻¹ 					
ii) Discuss Job's method of continuous variation for the determination of formation constant of complexes.						4
Q.	1	Answer ANY FOUR from (a) Justify the following stateme temperature on gradual heating (b) Draw the Lewis dot structure formal charges. Predict the modern compact of the formal charges of the modern compact of the modern	nt: "In CuSO ₄ :5H ₂ C ng. for SCN ion Give lost stable structure, for irreducible repr naracteristics, in solids, s of nanomaterials in	all possible resonating esentation. the field of semiconductors	g structures and calculate	12
		method.	Timilation of tollia	ion constant of compl	exes by mole ratio	

Page 2 of 2

6921C724CB47AE789787B107B08FB053