4.

4 .

2

2

4

- N.B.: 1) All questions are compulsory.
 - 2) Figures to the right indicate full marks.
 - 3) Use of logarithmic table/non programmable calculator is allowed.
 - 4) At. Wts: H = 1, C = 12, N = 14, 0 = 16, Na = 23, AI = 27, S = 32, C1 = 35.5, K = 39, Ca = 40, Cr = 52 = 108. Ba = 137, Pb = 207

l (a) Attempt any two of the following:

- (i) Explain briefly the following terms with respect to quantitative performance criteria of an analytical instrument:
 - 1) Detection Limit 2) Dynamic range.
- (ii) What do you understand by 'Quality management System'? Discuss 4
 Quality assurance and Quality control with respect to quality
 management system
- (iii) With respect to quantitative performance criteria of an analytical instrument, explain the terms, 'Calibration sensitivity' and 'Analytical sensitivity'. What are the advantages of analytical sensitivity?
- (iv) Discuss the types of quality standards for analytical laboratories.

(b) Attempt any one of the following:

- i) Define data Domain. Differentiate between analog domain and time domain.
- ii) Determination of 'Vitamin C' content of Citrus fruit drink gave the following results:
 % of Vitamin C: 0.218, 0.219, 0.230, 0.220, 0.225, 0.224
 Calculate figures of merit for precision.

2 a) Attempt any two of the following:

- i) 1748 Kg of soil sample contains 19 mg of Molybdenum (Mo).

 Calculate the concentration of Molybdenum in ppm and ppb.
 - 2) How many milligrams of K₂SO₄ are present in 100 cm³ of its 0.35 M solution?
- ii) 12.0 gm of aluminium sulphide reacts with 8 gm of water to give aluminum hydroxide and hydrogen sulphide as per the reaction Al₂S₃+ 6H₂O → 2Al(OH)₃+3H₂S Which is limiting reagent in reaction? Calculate the amount of Al(OH)₃ formed in the reaction.
- iii) 0.36g of Na₂CO₃ reacted completely with 25.7 cm³ of H₂SO₄ solution. Calculate the molarity of H₂SO₄ solution.

MG-Con. 10913-15.

	iv)	The pH of Mg(OH) ₂ solution is 11.35 at 25°C.Calculate the solubility product of Mg(OH) ₂ .	4		
b)	Atter	npt any one of the following:			
	i)	Calculate the mass of sodium acetate that should be added to 0.5dm ³	4		
		of an aqueous solution containing 0.02mol of acetic acid to obtain a	•		
		buffer solution of pH= 4.5 (Given Ka for acetic acid= 1.8 x 10 ⁻⁵)			
	ii)	1.0 mol of H ₂ was mixed with 1.0 mol I ₂ in 50.0 L container and	4		
		allowed to react at 448°C. The equilibrium constant for the reaction	,		
. ,		$H_{2(g)} + I_{2(g)} \rightarrow 2HI_{(g)}$ is 50.0 at 448°C. How many moles of H_2 and I_2			
	*	will be formed at equilibrium? How many moles of H ₂ and I ₂ will			
		remain unreacted?			
3 a)	Áttor	ant any two of the following.			
3 a)	22	npt any two of the following: What are the characteristics of solvent used in solvent extraction?	4		
•	i)	What are the characteristics of solvent used in solvent extraction?	7		
	٠,	What are the advantages of solid phase extraction over solvent extraction?			
	ii)	Derive mathematical expression to relate distribution ratio (D) to	4		
	11)	pH of aqueous solution in solvent extraction involving chelation.	-		
	iii)	Describe the technique of extraction by solvation with suitable	4		
	,	example.			
	iv)	Discuss any two factors affecting extraction by chelate formation.	4		
b)	Atter	npt any one of the following:			
	i) ·	With the help of neat labeled diagram describe the construction and	. 4		
		working of double beam densitometer used in HPTLC.			
	ii)	100 cm ³ of an aqueous solution containing 120 mg of solute, when	4		
		extracted once with 20 cm ³ of an organic solvent, 80 mg of the solute			
		was transferred to the organic solvent. Calculate the minimum number			
si *		of extractions required to transfer more than 98% of the solute, by			
Ť		using same volume of organic solvent.			
4. a)	Atten	Attempt any two of the following:			
	i)	Give an account of mobile phase reservoirs and solvent treatment	4		
,		systems used in HPLC.			
	ii)	With the help of neat labeled diagram, describe construction and	4		
		working of electrochemical detector used in HPLC.			
	iii)	Give an account of different columns used in GLC.	4		
•	- ·	TURN OVER			

- iv) What are the factors that are to be considered for the selection of liquid stationary phase in GLC?
- b) Attempt any one of the following:
 - i) How normal phase chromatography and reverse phase chromatography influence the separation of compounds? Explain with suitable example.
 - ii) The following data was obtained on liquid chromatographic column using a 25 cm packed column and a flow rate of mobile phase 0.412 cm³/min.

Component	Retention time, min	Peak width, min
Non-retained	1.4	
A	7.1	0.51
В	12.7	1.16

Calculate 1) The number of plates for each peak

- 2) The plate height for the column.
- 5. Attempt any four of the following:
 - a) What are non electrical domains?
 - b) What is a quality audit? How is it carried out?.
 - c) 87.4 cm³ of 0.135 M perchloric acid neutralized 50.0 cm³ of Manganese (II) hydroxide solution. What is the concentration of Manganese (II) hydroxide?
 - d) Calculate the mass of anhydrous HCl in 5.0 cm³ of HCl solution (density 1.19g/cm³) containing 37.23% HCl by weight.
 - e) Explain the principle of electrochromatography.
 - f) Distinguish between TLC and HPTLC.
 - g) On the basis of van Deemeter equation, explain the effect of Eddy diffusion on band broadening.
 - h) GSC has limited applications as compared to GLC. Explain.