- N.B.: (1) All questions are compulsory.
 - (2) Figures to right indicate full marks.
 - 1. (A) Answer any two of the following:—
 - (a) Draw Frost Musulin diagrams for benzene and cyclooctatetraene. Show the distribution of electrons in the MOs and comment on their aromaticity.
 - (b) Explain the following:—
 - (i) Aromaticity of [10] annulene.
 - (ii) Use of ¹H-NMR to prove the aromaticity of compound.
 - (c) Draw the π MO diagram of diene and dienophile showing electron distribution. Label the FMOs and show their interaction in Diels Alder reaction.
 - (d) Ethene absorbs at ~ 165 nm while butadiene absorbs at ~ 214 nm in uv spectroscopy. Explain using MO diagrams of ethene and butadiene.
 - (B) Answer any one of the following:—
 - (a) Explain the aromaticity of:-
 - (i) Ferrocene
 - (ii) Furan
 - (b) Draw the MO diagram for the allyll cation and allyl anion. Show the interaction of their FMOs. Predict the product of the reaction between the two ions.
- 2. (A) Answer any two of the following:—
 - (a) Predict the products (A) and (B) and justify their formation.

- (b) Explain the use of the following techniques in determining the mechanism of a reaction:
 - (i) Product Analysis
 - (ii) Stereochemical outcome.

I TURN OVER

		(c)	Explain:—	4
			(i) Although phenol has a pKa value of 9.95, its 2, 4, 6 – trinitro substituted derivative has a pKa of 1.02.	•
			(ii) The pKa value of pyridine is 5.21 while that of pyrrole is -0.27	ŀ
			examples.	4
	(B)	Ansv.	er any one of the following:—	
		(a)	Explain with the help of energy profile diagrams:	4
	:		(i) Hammond's postulate	•
		4.	(ii) Transition State Theory	
		.(b)	Explain the mechanism and stereochemistry of the E ₂ elimination reaction.	4
2	(4)	٠,		
3. (A) Answer any		Answ	er any two of the following:—	
		(a)	Explain with suitable examples:	4
			(i) Atropisomerism	
		<i>a</i> ((ii) Optical activity of ansa compounds	
		(b)	Answer the following:—	4
			(i) What is the principal axis of symmetry in a molecule? Draw and label	
			the principal axis of symmetry in ethylene.	
			(ii) Explain the syn anti system of nomenclature with an example.	
		(c)	Explain optical activity in molecules with a tricoordinate chiral centre.	4
		(d)	Answer the following:—	4
			(i) What is a pseudoasymmetric centre? Write the structure of a molecule	
			with a pseudoasymmetric centre and label it.	
			(ii) Assign configurational descriptors to the following molecules:	

(B) Answer any one of the following:—

(a) What are enantiotopic ligands? Explain how they are identified by substitution and symmetry criteria? Give examples to illustrate,

[TURN OVER

4

- (b) Answer the following:
 - (i) Define molecular chirality. Explain any one theory of axial chirality with a suitable example.
 - (ii) Identify the Re and Si faces in the following molecule:

- 4. (A) Attempt any two of the following:—
 - (a) Complete the following reactions and name them:

(b) Predict the products in the following reactions:—

[TURN OVER

- (c) Give the mechanism of Wolff-Kishner reduction on octan-2-one. What is Huang-Minlon modification of the reaction?
- (d) What is Oppenauer oxidation? Give its mechanism and one application.

(B) Attempt any one of the following:—

(a) Complete the following reactions and give mechanism of any one:

- (b) Illustrate the uses of the following in organic synthesis with one example each.
 - (i) CrO₂Cl₂
 - (ii) HIO₄
 - (iii) DDQ
 - (iv) Mg metal in neutral medium.
- 5. Attempt any four of the following:—
 - (A) What are homoaromatic compounds? Give an example.
 - (B) Which of the following compounds are aromatic and why?

- (C) Explain the mechanism of E_{1C}B reaction.
- (D) Explain secondary kinetic isotope effect with a suitable example.
- (E) Explain the optical activity of cyclophanes.
- '(F) Assign appropriate stereochemical descriptors to H_A and H_B.

MG-Con.-10958 -15

[TURN OVER

12

(G) What is Raney nickel? Predict the products X and Y in the following reactions.

$$\frac{\text{SH}}{\text{BF}_3} \times \frac{\text{Raney Ni}}{\text{H}_2} Y$$

(H) Complete the following reactions:—