Misc. Sem I April 2017 Chemistry I

QP Code: 03710

(2½ Hours)

[Total Marks: 60

N.B.: (1) All questions are compulsory.

(2) Figures to the right indicate full marks.

(3) Use of non-programmable calculator is allowed.

Useful constants:

1. (a) Attempt ANY TWO of the following

- i) State the third law of thermodynamics. Show that du is an exact differential whereas 4 dg and dw are not.
- ii) Derive an expression to show how entropy varies with temperature at constant pressure.
- iii) What is Joule -Thomson effect? Show that the enthalpy of the system remains constant in an adiabatic expansion.
- iv) Explain the term 'Gibbs free energy'. How does it vary with respect to temperature at 4 constant pressure?
- (b) Attempt ANY ONE of the following
 - i) Calculate the standard free energy change (ΔG^0) for the following reaction

$$\frac{1}{2}H_{2(g)} + \frac{1}{2}I_{2(g)} \rightarrow HI_{(g)}$$

where S^o of H₂, I₂ and HI are 130.146 JK-1mol ¹, 116.622 JK-1mol ⁻¹ and 206.074 JK-1mol ⁻¹ respectively. The standard enthalpy change for the reaction is 25.916 kJmol ⁻¹

- (ii) If Cv for Uranium metal is 3.04 JK 1mol at 20K, then calculate the absolute entropy 4
- 2. (a) Attempt ANY TWO of the following:
 - i) Explain the terms partial molal volume and partial molal enthalpy.
 - Ji) Define fugacity Give its unit. How is it graphically determined?
 - iii) Derive Gibbs-Duhem-Margules equation.
 - (iv) Explain with reference to free energy change, the role of ATP in biological systems.

(b) Attempt ANY ONE of the following:-

- i) Calculate the entropy of mixing when 56g of nitrogen gas, 6g of hydrogen gas and 34g

 of ammonia gas are mixed at constant temperature, assuming no chemical reaction
- ii) The partial molal volumes of two liquids P and Q in a mixture in which the mole fraction of P is 0.3713 are 188.2cm³ and 176.14cm³ respectively. The molar masses of A and B are 241.4 gmol⁻¹ and 198.2gmol⁻¹ What is the volume of solution of mass 1.000kg?

[TURN OVER]

4

QP Code: 03710

4

12

3. (a) Attempt ANY TWO of the following:-

- i) Derive thermodynamically the Gibbs adsorption isotherm for the adsorption of a solute 4 on the surface of a liquid.
- ii) Derive thermodynamically the Kelvin equation of the vapour pressure of droplets.
- iii) Explain the phase diagram of a two component system of solid-gas involving formation of hydrates of copper sulphate.
- iv) Draw and discuss the phase diagram of a two component system forming a stable 4 compound with incongruent melting point.

(b) Attempt ANY ONE of the following :-

- i) Draw and discuss the phase diagram of a three component system consisting of three pairs of partially miscible lliquids.
- ii) Draw and discuss the phase diagram of double salt decomposed by water with a suitable example. 4

4. (a) Attempt ANY TWO of the following:

- i) Explain the term activity coefficient and the mean ionic activity coefficent. State the 4 Debye-Huckel's limiting law of mean jonic activity coefficients and explain the terms involved.
- ii) Explain the Debye-Falkenhagen effect for the conductance of strong electrolytes. 4
- iii) Discuss in brief the solid oxide fuel cell. 4
- iv) Explain the structure and function of cell membrane.

(b) Attempt ANY ONE of the following:

i) Calculate the value of the resting membrane potential for the following :-Extra cellular Intra cellular 🙈 Ion species concentration (mM) concentration (mM)

120

given that $\frac{2.303 \text{RT}}{\text{plane}}$ at $\frac{2.98 \text{K}}{\text{plane}} = 60$. Fig. Calculate the mean activity coefficient of ZnCl_2 in a solution containing 1 x 10^{-3} m ZnCl_2 4 and 5×10^{-3} m 2nSO_4 solution (A = 0509 for water at 298K).

ttempt ANY FOUR of the following

a) What are exact and mexact differentials? Draw' the Maxwell's thermodynamic square.

b) Derive the relation

$$\begin{bmatrix} 3\hat{\mathbf{r}} \\ 3\hat{\mathbf{r}} \end{bmatrix} \subseteq \begin{bmatrix} 3\hat{\mathbf{r}} \\ 3\hat{\mathbf{r}} \end{bmatrix}$$

from the definition of enthalpy.

- c) Give the physical significance of partial molal free energy.
- d) Obtain an expression for the following thermodynamic excess functions

Si) Excess entropy Si ii) Excess enthalpy

- é) What is condensed phase rule? Sketch a labelled phase diagram of ternary system in which the hydrate is dehydrated by a second salt.
- Draw and discuss the phase diagram of a hydrated double salt decomposed by water.
- g) State the Debye-Huckel-Onsager's equation and explain the terms involved.
- (h) What are fuel cells and explain how they play an important role in the space programme.